This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In this paper, the possibility of applying Kirchhoff 's scalar approximation model for determining the backscattering coefficient from rough surfaces is investigated. Surfaces of dielectric and metallic materials, which have low roughness are considered. Based on the roughness parameters and electrical properties of these materials, the backscattering coefficient is modelled as a function of the incident angle of electromagnetic radiation used in laser scanning. It was represented that the type of scattering and the range of backscattering radiation angles, in the case of seemingly smooth surfaces, vary significantly when the roughness parameters change.
The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.