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Apstrakt:  

U ovom radu je analiziran linijski koeficijent prolaza toplote jednostavnog toplotnog 
mosta koji se javlja na spoju uniformne balkonske ploče i zida. Model zavisi od pet 
parametara: debljina, dužina i toplotna provodljivost balkonske ploče; debljina i toplotna 
provodljivost zida. Rezultati istraživanja ukazuju da dužina balkonske ploče ne utiče na 
linijski koeficijent prolaza toplote, dok je zavisnost od druga dva parametra ploče 
linearnog tipa. S druge strane, zavisnost od parametara zida je komplikovanijeg oblika, a 
odgovarajući izrazi koji opisuju ovu zavisnost su uspješno izvedeni. Ovo istraživanje 
predstavlja prvi korak u pronalaženju semi-empirijske jednačine, koja bi mogla uspješno 
opisati linijski koeficijent prolaza toplote toplotnog mosta koji se javlja na spoju betonske 
ploče i homogenog višeslojnog zida. 

Ključne riječi: prenos toplote, toplotni most, balkon, numerička simulacija 

ANALYSIS OF LINEAR THERMAL TRANSMITTANCE OF A 
SIMPLE BALCONY THERMAL BRIDGE 

Abstract:  

The linear thermal transmittance of a simple balcony thermal bridge with a uniform 
balcony slab and wall was analysed. In a five-parameter model (thickness, length and 
thermal conductivity of a balcony slab; thickness and thermal conductivity of an adjacent 
wall), it was found that the length of the balcony slab does not influence the thermal 
transmittance, while its dependence on the other two slab parameters is linear. The 
influence of wall parameters on the linear transmittance proved to be more complicated, 
but appropriate expressions were successfully found. The study presents the first step in 
the search of a semi-empirical formula that can successfully describe the linear 
transmittance of a balcony thermal bridge with a homogeneous multi- layer wall. 

Keywords: heat transfer, thermal bridge, balcony, numerical simulation 
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1. INTRODUCTION 

Due to ecological and also economy reasons, energy efficiency of  buildings is gaining on 
importance. Laws regarding energy efficiency are getting stricter and we are past the stage, 
when heat losses can be simply treated by just adding a thicker insulation layer and/or 
better fenestration. Heat losses and gains in buildings have to be understood on a deeper 
level, especially including the heat losses through thermal bridges and ventilation. Some 
case studies show, that the heat losses through  thermal bridges can reach 50% of all 
building heat losses or, in some special cases, even larger ratio is possible [1]. Specifically, 
balcony thermal bridges and thermal bridges around fenestration are the most critical. 
Nevertheless, the proper treatment of the heat losses through thermal bridges, at least in 
Slovenia, is usually inaccurate. For example, [2] allows treating heat losses through 
thermal bridges just by adding general value of 0.06 W/m^2K to the heat flow rate per 
square meter if the linear transmittance of thermal bridges does not exceed 0,2 W/mK. 
Nevertheless, this general value is used even in cases where thermal bridges with linear 
transmittance larger than 0,2 W/mK are present. There are probably several reasons for 
this practice. One of these reasons is, that the calculation of the linear transmittance of 
thermal bridges is more complicated than simple calculation of the heat loss trough 
uniform wall. These calculations usually require usage of expensive software, or consume 
time and require good knowledge of numerical calculation tools.   
Apart from numerical calculations, SIST EN ISO 14683 [3] in certain cases allows simpler 
treatment of thermal bridges. One of the techniques is to use cataloged values. 
Nevertheless, values of linear transmittance in catalog in [3] are usually rater large in 
comparison with real values [1] and therefore, their usage is disfavored. Another method 
would be to use semi-empirical expressions, similar to those used in treatment of heat 
losses through ground, defined in [4].  
Such expressions for some thermal bridges are for example proposed by [5, 6]. 
Nevertheless, in these studies, the expression for linear thermal transmittance of thermal 
bridges was assumed to be of the form 
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where: 

     is the linear thermal transmittance of the thermal bridge  mKW / , 

tbl     is the thickness of the thermal bridge (e. g. balcony slab thickness)  m , 

tbU   is the thermal transmittance of the thermal bridge (e. g. balcony slab)  KmW 2/ , 

)( wrf   is the linear function of thermal resistances of adjacent walls   mW / , 

    is the temperature difference between interior and exterior  Co . 

 

For the )( wrf linear regression model is proposed. Although the above expression is 

logical, real situation is probably richer in structure. This is, for example,  indicated by 
cataloged values in [3], where it can be noted, that the value of linear transmittance can 
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strongly depend on the position of insulation layer. Likewise, the values of )( wrf  in [5, 

6] show stochastic features, although no stochastic nature is expected.  
Therefore, in this paper, a semi-empirical expression for a linear thermal transmittance of 
a simple balcony thermal bridge will be proposed without any assumption on the form. 
Analysis will be done on a simple model case of a balcony consisting of a uniform single 
layer balcony slab and uniform single layer wall that can be later used as a base for more 
complicated analysis of a thermal bridge with a multiple layer wall. 
The paper is structured as following. Theoretical introduction is given is section 2. In 
section 2.1,  basic expressions are defined and method of calculation of a linear thermal 
transmittance of a thermal bridge is explained. In section 2.2, software used in calculations 
is introduced. Results are given in sections 3 and 4 In section 3, single parameter variations 
are presented. In section 4, semi-empirical expression for a linear thermal transmittance 
of a balcony thermal bridge is given. Conclusions are stated in section 5. 
 

2. FRAMEWORK 

Analysis is done on a simple model case of a balcony, consisting of a uniform single layer 
balcony slab and uniform single layer wall (see Fig. 1), later to be extended on a multiple 
layer balcony slab and wall. This simple example therefore depends on five parameters: 
thermal conductivity of the wall ( w ), thermal conductivity of a balcony slab ( s ), 

thickness of a wall ( wd ), thickness of a balcony slab ( sd ) and length of a balcony slab (

l ). Parameters 1l , 2l  and 3l  were set to 2.5 m. 

Figure 1. Two dimensional model of a simple balcony thermal bridge 
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2.1 BASIC DEFINITIONS 

The overall heat loss of a building can be described by a heat transfer coefficient H, 
defined as a heat flow rate trough building’s thermal envelope, divided by temperature 
difference between inside and outside of a building 
 

                                                                      



H                                                   (2) 

where: 

H    is a heat transfer coefficient  KW / , 

     is  a heat flow rate  W , 

   is the temperate difference between inside and outside of the building  Co . 

 
The heat transfer coefficient depends on dimensions of the building. Larger is the surface 
of thermal envelope of the building, higher, in general, is the heat transfer coefficient. On 
the other hand, heat loss trough a specific wall is specified by thermal transmittance: a 
heat flow rate through a unit area of wall, divided by temperature difference on both sides 
of a wall 
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where: 

U is a thermal transmittance  KmW 2/ , 

 is a heat flow rate  W , 

A is an area of the wall  2m , 

 is a difference in  air temperatures on both sides of the wall  Co . 

 
It is expected than, that the heat transfer coefficient can be simply calculated by summing 
up thermal transmittances through all thermal envelope components multiplied by their 
area. Nevertheless, this is not a case, as heat loss trough thermal bridges, like wall 
junctions, balconies, around windows and similar geometrical and structural object, is 
more complicated. Namely, heat flow rate in these cases in not perpendicular to the wall 
surface as in the case of homogeneous building components. Therefore, more precisely, 
the relation between thermal transmittances and heat transfer coefficient, can be written 
as 
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where: 

H    is a heat transfer coefficient  KW / , 

iU   is a thermal transmittance  of the i-th wall  KmW 2/ , 

iA    is an area of the i-th  wall  2m , 

j   is a linear thermal transmittance of the j-th linear thermal bridge  mKW /  , 

jl     is a length of the  j-th  linear thermal bridge  m , 

k   is a point thermal transmittance of k-th point thermal bridge  KW / . 

 
So, according to their geometry, thermal bridges can be divided into linear and point 
thermal bridges. Linear thermal bridges can be presented by line (e. g. junction of two 
walls, thermal bridge around windows…), while point thermal bridges can be presented 
by a point (e. g. junction of three walls, junction of a pillar with a roof…). According to 
[3], in most cases, point thermal bridges can be neglected.  
 
Heat flow rate trough linear thermal bridge is calculated by solving a Laplace equation  
 

                                                                     02                                                       (5) 
 
where: 

   is a temperature in a given point  Co , 

on a two dimensional geometrical model of a thermal bridge with its surroundings. An 
example of such geometrical model for a balcony thermal bridge is presented in Fig. 1. 
Details of how to construct two dimensional model of a thermal bridge and what boundary 
conditions have to be used, is defined in [7].  
The following boundary conditions are used: 

 Density of heat flow rate perpendicular to the cut-off surfaces (dotted line in Fig 
1.) has to be zero (adiabatic boundary condition) 

 

                                                         0




r

q
                                                (6) 

 
               where: 

  q  is density of the heat flow rate perpendicular to cut-off surfaces  2/ mW , 

    is thermal conductivity  mKW / , 

  
r


 is partial derivative of a temperature field in a direction perpendicular to 

          cut-off surface  mK / . 
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 Density of heat flow rate perpendicular to surfaces facing exterior (thick full line 
in Fig. 1), has to be 
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  where: 
  q     is density of the heat flow rate perpendicular to the surfaces facing exterior    

                       2/ mW , 

  e    is external temperature  Co , 

  es   is temperature on a boundary  (surfaces facing exterior)  Co , 

  seR   is external surface resistance  WKm /2 . 

 Density of heat flow rate perpendicular to surfaces facing interior (thin full line 
in Fig. 1), has to be 
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  where: 
  q     is density of the heat flow rate perpendicular to the surfaces facing interior    

                       2/ mW , 

  i    is internal temperature  Co , 

  is   is temperature on a boundary  (surfaces facing interior)  Co , 

  siR   is internal surface resistance  WKm /2 . 

 

Thermal coupling coefficient ( DL2 ) is than defined as an integral of a density of a  heat 

flow rate over outside or over inside surfaces, divided by the external and internal 
temperature difference: 
 

                                                                


  qdr
L D2                                                  (9) 

 
where, 

DL2    is thermal coupling coefficient  mKW / , 

 q       is density of a heat flow rate  2/ mW , 
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    is the difference between external and internal temperatures  Co

. 
 
From thermal coupling coefficient, the linear thermal transmittance is them simply 
calculated as 
 

     wD LUL  2                (10) 

 
where: 

      is linear thermal transmittance  mKW / , 

DL2   is thermal coupling coefficient  mKW / , 

sdllL  21   is the length of the modeled element  m , 

wU   is the thermal transmittance of the wall  KmW 2/ . 

 

Here, the external dimension of the wall ( sdllL  21 ) is used. Alternatively, one 

can also use internal wall dimensions ( 21 ll  ) as long as internal dimensions are used 

consistently when calculating heat transfer coefficient (see Eq. (2)). In this study, external 
dimensions are used, as its usage is prescribed in [2]. 
 
 

2. 2. FREE FEM PDE SOLVER 

 A thermal coupling coefficient of a balcony was calculated using Free Fem [8]. Free Fem 
is an open source partial differential equation solver based on a final element method. It is 
capable of solving 2D and 3D partial differential equation and gives a user a good control 
over a calculation details. User writes a short script in which he or she defines geometry, 
type of final elements, method of how the final elements are spanned (e. g. adapt mash), 
differential equation to be solved, initial and boundary conditions, details of calculations 
(e. g. precision, numerical method for dealing with matrices), etc.. As all information are 
defined trough script, Free Fem is more tedious to use than other graphically based PDE 
solvers, but in return gives better control over input parameters and greater freedom in 
data analysis. In this study, uniform triangle mash was used with around 25 000 P2 
parabolic elements [8] and the precision of calculation was set to a relative error of 10E-
9. 
 

3. SINGLE PARAMETER VARIATIONS 

Before overall fit of all parameters is done, linear thermal transmittance of the balcony 
will be calculated by varying one of the parameters, while all other parameters are kept 
fixed. By this method, one can gain some insight into importance and influence of a 
specific parameter on a linear thermal transmittance of a balcony. To be able to get a better 
understanding of the shape of the function describing the dependence of linear thermal 
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transmittance of a balcony on a specific parameter, parameters were also varied outside 
their realistic values. The results are shown in Figs. 2-4. 
 
 
 
 
 
 

 

Figure 2. Influence of the length of a balcony slab on a linear thermal transmittance of 
the balcony 

 

 

 

Figure 3. Influence of the thickness and thermal conductivity of a balcony slab on linear 
thermal transmittance of the balcony 
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Figure 4. Influence of the thickness and thermal conductivity of a wall on linear thermal 
transmittance of the balcony 

 

From Fig. 2, one can easily conclude, that the length of the balcony slab has no influence 
on thermal transmittance of the balcony. This is welcome fact, as it deduces the number 
of model parameters from five to four. It is also in accordance with the assumption made 
by [5, 6] and stated in Eq. (1). Furthermore, it can be deduced from Fig. 3 that the linear 
thermal transmittance of the balcony can be presented as a linear function of both thickness 
and the thermal conductivity of the balcony slab, which further simplifies the analysis. 
Surprisingly, it can be also perceived, that the linear thermal transmittance of the balcony 
falls with the increasing thickness of the balcony slab, which is unexpected and in 
contradiction to the assumption made by [5, 6]. Finally, from Fig. 4, it can be observed 
that the dependence of thermal transmittance of a balcony of thickness and conductivity 
of a wall is rich in structure, and more complicated regression function instead of linear 
should be used. From the above observations, the following solution is proposed: first, two 
different balcony slab thickness ( 1sd , 2sd ) and balcony slab thermal conductivities ( 1s
, 2s ) will be chosen. Next, in section 4, at each combination of these fixed values, the 

function of thickens and the thermal conductivity of the wall that best describes the linear 
thermal transmittance of the balcony, will be found. From these data, one should than be 
able to deduce linear thermal transmittance of the balcony at any set of parameters by 
simple interpolation.  
From Fig. 3 (left) it can be observed, that the dependence of linear thermal transmittance 
of the balcony on balcony slab thickness is strongly linear, so any two balcony slab 
thicknesses can be chosen.  To be near the realistic span of parameters, 1sd =10cm and 

2sd =20cm would be used, but any other similar choice would be equally good. On the 

other hand, the linearity of liner thermal transmittance of a balcony on balcony slab 
thermal conductivity is not so strong (Fig. 3, right), so representative parameters should 
be chosen more carefully. As values of linear thermal transmitance of in points 1s
=1.5W/mK and  2s =2.5W/mK coincide with the linear function found by regression, 

these two values will be taken as reference values. 
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4. REGRESSION MODEL OF LINEAR THERMAL 
TRANSMITTANCE OF THE BALCONY 

First, the dependence of linear thermal transmittance of the balcony on thermal 
conductivity of the wall will be studied.  Namely, from Fig. 4, it can be seen that this 
dependency is easier to deduce.  The fit was done using exponential function, arc-tan 
function and rational function. All three expressions fit data with a very good precision, 
although arc-tan function and rational function fit data somewhat better then exponential 
function. Due to simplicity, rational functions are used. In Fig 5 therefore, the dots present 
calculated values of linear thermal transmittance at fixed parameter values, while full line 
presents best rational function found by the regression of the form: 
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)(           (11) 

 
where: 

    is a linear thermal transmittance of a balcony   mKW / , 

w   is a thermal conductivity of a wall  mKW / , 

)(),(),( www dCdBdA   are functions of wall thickness. 

                

Figure 5. Dependence of the linear thermal transmittance of the balcony on the thermal 
conductivity of the wall (first row d_s1=10 cm,  second row, d_s2=20 cm, first column 

λ_s1 =1.5 W/mK, second column λ_s2 =2.5 W/mK) 
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Multiple lines present variations of the wall thickness, while four diagrams present 
solutions at four sets of balcony slab thickness and thermal conductivity. 

Regression functions )( wdA , )( wdB  and )( wdC are presented in Fig. 6-8. Dots present 

values of parameters belonging to different lines in Fig. 5, while full lines presents 
functions found by regression model. Similar as before, four diagrams present solutions at 
four sets of balcony slab thickness and thermal conductivity. 

 It is can be concluded, that the function )( wdC  can be simply approximated with the 

linear function. The shapes of the functions  )( wdA  and )( wdB were harder to deduce, 

but it was fund out that the following expressions approximate the data with relatively 
good precision: 

   2
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     ww dCdC 1)(  ,          (14) 

where: 

 wd  is the balcony wall thickness  m  .                         

Coefficients iA , iB  and iC are given in Table 1.  

 

Figure 6.  Function A(d_w) for different combinations of balcony slab thickenss and 
thermal conductivity  (first row d_s1=10 cm,  second row, d_s2=20 cm, first column 

λ_s1 =1.5 W/mK, second column λ_s2 =2.5 W/mK) 
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Figure 7.  Function B(d_w) for different combinations of balcony slab thickenss and 
thermal conductivity  (first row d_s1=10 cm,  second row, d_s2=20 cm, first column 

λ_s1 =1.5 W/mK, second column λ_s2 =2.5 W/mK) 

 

Figure 8. Function C(d_w) for different combinations of balcony slab thickenss and 
thermal conductivity  (first row d_s1=10 cm,  second row, d_s2=20 cm, first column 

λ_s1 =1.5 W/mK, second column λ_s2 =2.5 W/mK) 

The linear thermal transmittance of the balcony with parameters swsw dd  ,,, can now 

be calculated in a following way: 



201 
 

 First one calculates the linear thermal transmittance at given wall thickness and 
thermal conductivity at all four combinations of representative balcony slab 
thicknesses ( 1sd =10cm and 2sd =20cm)   and thermal conductivities  ( 1s
=1.5W/mK and 2s =2.5W/mK): ),,( 1,111 ssww dd  , 

),,( 1,212 ssww dd  ,  ),,( 2,121 ssww dd   and  ),,( 2,222 ssww dd 
, using Eq. (11)-(14) and coefficients from Table 1. 

 From above values and using interpolation, the linear thermal transmittance at 
wanted balcony slab thickness and thermal conductivity is calculated 
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Table 1. The coefficients for the regression functions )( wdA , )( wdB  and )( wdC  

 )( 1,111 ssd   

]/[ mKW

)( 1,212 ssd   

]/[ mKW

)( 2,121 ssd   

]/[ mKW

)( 2,222 ssd   

]/[ mKW  

1A ]/[ WK  
11.6 9.55 5.9 3.88 

2A ]/[ WmK  
0.17 0.19 0.3 0.29 

3A ]/[ mKW  
-4.99 -4.05 -5.29 -4.61 

4A ]/[ 2 KmW  
2.06 2.31 1.72 2.36 

5A
 ]/[ 3 KmW  

-0.69 -0.79 -0.43 -0.73 

1B ])/[( 2mKW  
12 12.1 18.6 18.93 

2B ]/1[ m  
12.3 12.62 7.88 8.03 

3B ]/[ 232 KmW  6.83 -0.03 5.85 -1.69 

1C ]/[ 2 KmW  
4.31 4.14 4.45 4.31 
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5. CONCLUSION 

A linear thermal transmittance of a simple balcony model with uniform single layer slab 
and uniform single layer wall was studied. It was found that the length of balcony slab 
does not have influence on the linear thermal transmittance, while it linearly depends on 
two other slab parameters: thickness and thermal conductivity.  The influence of the wall 
parameters on a linear transmittance proved to be more complicated, but appropriate 
expressions were successfully found. Finally, a method that gives the linear thermal 
transmittance of a simple balcony thermal bridge for any combination of all five 
parameters to a good precision, is presented. The study presents the first step in a search 
for a semi-empirical formula that can describe the linear thermal transmittance of a 
balcony with multiple layer homogeneous walls. If successful, the same method can be 
used for deducing semi-empirical expressions for other types of critical thermal bridges 
(like, for example, thermal bridge around windows). 
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