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Abstract:

In this paper dynamic analysis of a curved Bernoulli — Euler beam subjected to a moving load is
presented. Moving load is modelled as a single force with constant magnitude and direction, which
moves along its trajectory. Plane curved Bernoulli — Euler beam element is formulated using
isogeometric approach where both the displacement field and geometry of the beam are described
using NURBS basis functions. Behavior of the beam element is defined and studied in the case of
linear formulation where displacements and displacement gradients are assumed to be small.
Validation of the proposed approach is presented for the plane curved beam subjected to moving
load with constant velocity, magnitude and direction.
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JANHAMUNYKA AHAJIN3A PABAHCKE
N30TEOMETPUJCKEBEPHYJIN - OJJIEPOBE KPUBE I'PEJIE
OIITEPEREHE ITIOKPETHUM OIITEPEREILEM IPUMEHOM
N30TEOMETPUJCKOTI IPUCTYITA

Caricemax:

Y oBOM pany mpHKa3aHa je JUHAMWYKa aHaJu3a KpUBOJIMHHjCKOT bepHynn — OjiaepoBor rpexHor
Hocadya omnrepeheHor mokperHuM ontepehemeM. IlokpetHo omnrtepeheme je meduHHCaHO Kao
KOHIICHTPHCAaHAa CWJIa KOHCTAaHTHOT HWHTEH3WTETa, NpaBIla M cMepa, koja ce kpehe mo cBojoj
TpajekTopuju. PaBaHcka KpUBONMHHjCKA rpena je (opmysiMcaHa HPUMEHOM H30T€OMETPHU)jCKOT
MIPUCTYTIa TA€ CE T0JbE IOMepama ONUCyje UCTUM (PyHKIMjaMa Kao U reoMeTpHja KOHCTPYKIHje,
HYPBC ¢ynkuujama. AHannza yTunaja mokpeTHor ontepehema Ha KOHCTPYKLHWjY c€ BpIIN Y
yCIOBUMa MalluX IOMepama M TIpajdjeHaTa IOMepama, Tj. y YCJIIOBHMa JIMHEapHE aHalu3e.
Banupanuja mpukazaHor NpUCTYIa je JaTa Ha NPUMEpPy paBaHCKEe KPUBOJIMHHjCKE Tpelie Koja je
onrepeheHa MOKpeTHUM ontepehemeM KOHCTAaHTHOT HMHTEH3WTETa, IpaBIla, cMepa W Op3uHe
KpeTama.

Kmwyune pujeuu: usoceomempujcxa bepnynu — Ojneposa kpuea epeda, nokpemno onmepeherve,
JUHeapHa anaiu3a



1. INTRODUCTION

Moving load generates dynamic response, which can be critical for bridges and cranes amongst
others. This load, generated by the moving mass on the structure, is usually modelled as a
gravitational force with constant magnitude and direction [1, 2]. Using this formulation the inertial
part of moving mass is neglected which can be significant in some cases [3]. It is essential to define
moving load trajectory and its position of the structure at each time. In linear dynamic analysis, the
assumption that the moving load trajectory matches the undeformed structure geometry is valid and
will be used in this formulation.

Curved structure geometry can be defined using CAD (Computer Aided Design) software packages,
which are based on NURBS (Non Uniform Rational B-Spline) functions. These rational functions
are used for their capability to exactly represent shapes of conical sections like circle, ellipse,
parabola, hyperbola as well as free form curves. Consequently, the trajectory of the moving load can
be obtained exactly using the NURBS basis functions.

Most of the software packages for structural analysis are based on finite element method (FEM). In
order to apply FEM, physical domain of a structure has to be discretized, forming mesh of finite
elements. This discretization is obtained from the structure’s geometrical model. If the analysis
results are not accurate, finer mesh is required which is obtained from the geometrical model of the
structure. Back and forward procedure between the structural geometry and analysis model can use
great computational and time resources, which represent a disadvantage of the FEM.

In order to overcome this disadvantage, the isogeometric approach (IGA) has been developed by
Hughes and his co-workers [4] where solution space is formed using the same basis functions -
NURBS that are used for geometry description. The focus of IGA utilization is on curved structural
elements. For several years great effort has been devoted to the formulation of a Bernoulli — Euler
curved elements for static and dynamic analysis [5 — 7].

In this paper dynamic analysis of a curved plane Bernoulli - Euler beam subjected to a moving load
is presented. The trajectory of a load matches the beam geometry, which has been defined using
NURBS basis functions. This assumption is valid for linear dynamic analysis. Plane curved beam is
defined using Bernoulli — Euler beam theory as presented in [7]. All necessary elements have been
implemented in MATLAB [8] and used to calculate dynamic response. The results obtained using
the presented formulation are compared with the results from the literature.

2. BASICS OF NURBS

Geometry of a plane curve C(¢) can be represented using NURBS parametrization as:
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where & represents the independent parameter, R;,(&) is the i-th NURBS basis function of degree
p, while C; is the i-th control point defined in Cartesian coordinate system. As can be noticed, basis
vectors are defined in parametric domain using so-called knot vector composed of non-decreasing
sets (&) of coordinates in parametric domain, called knots. NURBS functions as rational functions
are constructed from B — Spline functions as:
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where w; is i-th function weight. B — Spline functions are polynomial functions obtained using Cox
de Boor algorithm. For the case of zero degree the B — Spline functions are defined as:

if &€ [E.8 0

otherwise
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while for the polynomial degree greater than zero:
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B — Spline functions have a property of non — negativity, partition of unity, and with adequate choice
of knot vector, interpolator property at the domain boundary. The properties of B — Spline functions
are inherited for NURBS basis functions, which is important for beam formulation. In Figure 1 plane
curve with an arbitrary shape defined using four control points and adequate NURBS basis functions
has been presented. More about B — Spline and NURBS functions and their properties and utilization
can be found in [9].
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Figure 1. Plane curve and corresponding NURBS basis functions
3. BEAM GEOMETRY

Due to the assumption of undeformable beam’s cross section, all beam quantities are defined at
beam’s centerline. Centerline of curved beam is curve line which can be parametrized using NURBS
parametrization as:
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where r(¢) is the position vector of beam’s centreline, while r; is the i-th control point, Figure 2.
Using well-known relations of differential geometry [10] the basis vectors of plane curve are defined
as:
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where g; vector is the general non-unit vector collinear to tangent vector t, g> is the normal vector
perpendicular to tangent vector thus lies in beam’s cross section, K is the curvature vector with its
modulus K, while s represents the arc — length coordinate. Metric tensor of presented reference frame
is obtained as:
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Figure 1. Undeformed and deformed beam’s centerline

First derivative of basis vectors with respect to the parametric coordinate is obtained using Frenet —

Serret relation as:
el = [ 4
= 9
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where I''y; is Christoffel symbol of the second kind. Using the frame of reference, the position vector
of an arbitrary point of beam is obtained as:
F=rtng, (10)

where 5 represents the coordinate axis in the direction to the beam’s cross section principle axis.
From previous relation the basis vectors of an arbitrary point are:
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As can be noticed, second basis vector is independent on the point position due to the assumption of
rigid cross section. Metric tensor of an arbitrary point is obtained as:
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4. ISOGEOMETRIC BERNOULLI - EULER BEAM FORMULATION
Position vector of beam’s centerline in deformed configuration is given as:

r'=r+u (14)
where u represents the displacement vector of beam’s centreline, Figure 2. If both undeformed and

deformed beam configurations are parametrized using the same parametrization, then the
displacement vector is defined as:
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Eq. (15) represents the main property of the isogeometric approach where geometry and solution
space are defined using the same basis functions.

Using convective system of reference, the deformation of the beam is contained in the deformation
of beam’s basis vectors as:

g =g +u, (16)
In addition, displacement field of an arbitrary point is given as:
ii=u+yu, (17)
Correspondingly, acceleration and displacement variations of an arbitrary beam point are given as:
a= (i) = ii + zii, (18)
& = du + ndu, (19)

As mentioned before, the beam formulation is given in the convective system of reference. Thus,
the axial deformation term of the deformation tensor is obtained as:
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where terms 11 and & represent respectively the strain deformation of the beam’s centreline and
bending deformation about the axis g»:
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In this paper, generalized Hook’s law is used in order to define relation between stress and
deformation terms:
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where E is Young’s modulus, while v represents the Poisson’s coefficient. In order to obtain
equations of motion, the principle of virtual work is used:
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where p is the mass density, S is the second Piola-Kirchoff stress tensor, JE is variation of the Green-
Lagrangian strain tensor, while f is the external load. Applying Eqgs. (18), (19), (20) and (23), the
governing equation of moving load problem on curved beam is obtained:

Mq+Kq=Q (25)

where M is the mass matrix, K is the stiffness matrix, Q is the vector of equivalent control forces,
while q is the displacement vector of the control points. In order to solve Eq. (25), numerical step
by step integration has been applied based on the finite difference method. Also, for calculation of
mass and stiffness matrices, given in [7], as well as vector of equivalent forces, reduced numerical
integration [11] has been applied and implemented in original MATLAB [8] code.



5. MOVING LOAD

Moving load is a spatially varying load, which generates dynamic response of a structure. This load
can be modelled as a single force with constant magnitude (fo) and direction, which moves along a
beam with velocity Ve:
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where V: and V are the velocity magnitudes given in NURBS and arc - length parametrizations,
respectively. Point moving load transformed with respect to the integration points is presented in
Figure 3.
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Figure 2. Moving load distribution on integration points

6. NUMERICAL EXAMPLE

To illustrate and validate the proposed method, dynamic analysis of simply supported plane curved
beam subjected to the moving load is carried out. Geometry, material properties and load of the
beam are given in Figure 4. Beam geometry is generated using the following control points:
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and NURBS basis functions of degree 2 constructed using knot vector E™=[0 0 0 1 1 1] and
weights wI = [1 sin(n/3) 1]. Applied force has magnitude of 0.106 kN and moves along the beam
with velocity V= 8.1 m/s.
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Figure 3. Simply supported curved beam subjected to the moving load with constant
velocity and magnitude

The convergence of the presented approach has been investigated using the # — refinement, which
is achieved by knot insertion in the parametric domain. By applying this refinement procedure, the
geometry of structure remains unchanged while the number of degrees of freedom (DOF) increases.



In this example, four beam models are analyzed with different number of DOFs: Model 1 (10 DOFs),
Model 2 (22 DOFs), Model 3 (42 DOFs), Model 4 (82 DOFs). In Figure 5, time history of the
displacement at the position of the moving load is presented. The results converged in Model 3 with
42 DOFs. However, some discrepancies have been noticed in comparison with the results reported
in [3]. These discrepancies occurred due to the applied beam model based on Timoshenko theory.

7. CONCLUSIONS

In this paper the dynamic analysis of a curved plane Bernoulli — Euler beam subjected to a moving
load is presented. The moving load is modelled as a point force with constant magnitude and
direction, while the curved beam is modelled using the isogeometric approach. It is assumed that the
moving load trajectory matches the shape of the undeformed beam. In order to validate presented
formulation the numerical example of a moving load on a curved plane beam has been carried out.
Good agreement between the results obtained using the presented approach and the results from the
literature has been shown. For future research, the dynamic analysis of a plane curved beam
subjected to a moving mass will be investigated. In addition, the influence of moving load and mass
can be extended to the case of spatial curved beam element.

Model | Model 2 Model 3 Model 4 #* Lin & Lee [3]
o X107
-0.2
-0.4

Displacement [m]
o
oo

=12
-1.4
-1.6 =3 : : ;
0 0.2 0.4 0.6 0.8 1 1.2 1.4
t[s]
Figure 4. Vertical displacement of beam at the position of the moving load
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