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Abstract:  
If the loading is non-conservative, the loss of stability may not manifest itself as the system 
going into another equilibrium state, but as exhibiting oscillations of increasing amplitude. 
To take account of this possibility, we must consider the dynamic behavior of the system, 
because stability is essentially a dynamic concept. In the paper the author’s theory, named 
the rheological-dynamical analogy (RDA), is used to examine the phenomena of 
instability in linear internally damped inelastic (LIDI) dynamical systems. Apart from 
quantitative research, qualitative research is presented to demonstrate the influence of 
inelasticity and internal friction on dynamic response.   
Keywords: non-conservative loading; phenomena of instability; LIDI dynamical 
systems; RDA.  

POJAVA NESTABILNOSTI U NEKONZERVATIVNIM 
DINAMIČKIM SISTEMIMA  

Rezime:  
Ako je opterećenje nekonzervativno, gubitak stabilnosti se možda ne manifestuje tako da 
sistem ide u drugo ravnotežno stanje, nego ispoljava oscilacije povećavajućih amplituda. 
Da bismo uzeli u obzir ovu mogućnost moramo razmatrati dinamičko ponašanje sistema, 
jer stabilnost je u suštini dinamički koncept. U ovom radu autorova teorija, pod nazivom 
reološko-dinamička analogija (RDA), se koristi za ispitivanje pojave nestabilnosti u 
linearnim interno prigušenim neelastičnim (LIPN) dinamičkim sistemima. Pored 
kvantitativnog istraživanja, kvalitativno istraživanje je predstavljeno da se pokaže uticaj 
neelastičnosti i unutrašnjeg trenja na dinamički odgovor. 
Ključne reči: nekonzervativno opterećenje; pojava nestabilnosti; LIPN dinamički 
sistemi; RDA. 
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1. INTRODUCTION  

The characterization of the internal friction and damping capacity of vibrating structures 
has traditionally been limited in structural dynamics because of the complexity of this 
problem both in terms of material and structure. The topic of damping has been a problem 
for quite a long time and it presents severe difficulty in view of physical damping 
mechanisms. Thus, reliable information on damping is as yet rather scanty [1]. All 
damping ultimately comes from frictional effects, which may however take place at 
different scales. But occasionally, the engineer uses damping devices designed to produce 
beneficial effects. Those devices can often be idealized as lumped objects, modeled as 
point forces or moments, and said to produce localized damping. One modeling 
complication is that friction may depend on fabrication or construction details that are not 
easy to predict; e.g., bolted versus welded connections. Damping models have been 
criticized by many investigators for various justified reasons and they cannot easily be 
used without a proper understanding of damping mechanisms [2]. The purpose of this 
paper is to investigate the stability or instability of LIDI systems due to the initial 
conditions in the material and various values of the modal damping ratio. 
 Damping analysis of LIDI systems includes two different classes, one involving the 
material damping, and the other damping the system under various conditions such as 
damage and sinusoidal loading. There have been detailed studies into the material damping 
[3], and also into energy dissipation mechanisms in structural elements [4, 5]. But here 
difficulty lies in representing these two mechanisms in different parts of the structure in a 
unified manner. In practice, engineering structures are usually complex, and their dynamic 
analysis is traditionally performed using the conventional finite element method (FEM). 
Finite element solutions in dynamics are obtained by employing two different methods [6, 
7], the modal method and time marching schemes. In modal analysis, responses of 
individual modes are superimposed to determine the total response. Traditionally, energy 
dissipation in a structure is represented as an idealized viscous damping force (non-
conservative force), i.e. a force directly proportional to the velocity of the corresponding 
dynamic system. In this case, the structure mass and stiffness matrices remain constant 
during the analysis and satisfy the well-known orthogonality conditions. If the damping 
matrix also satisfies the criterion of orthogonality, the equations of motion for a discretized 
multiple degree-of-freedom (MDOF) structure can be decoupled into i independent 
equations, one for each normal mode of the structure. Therefore, it is assumed that the 
modal damping matrix is diagonal, with the modal damping terms 2 i iξ ω . Ratio iξ  is 
defined as the ratio of damping in mode i to the critical damping in mode i. Consequently, 
the modal analysis originally developed for undamped systems is used herein to analyze 
LIDI systems taking into account the viscoelastoplastic (VEP) modal damping ratios [2]. 
Note that this procedure directly delivers a diagonal modal damping matrix rather than the 
real damping matrix, which need not be explicitly constructed. To obtain the real damping 
matrix, mode orthogonality relations must be taken into account. 
 Nowadays, there is a growing interest in developing a theory which would enable the 
prediction of non-conservative forces using a unique mathematical formulation, which 
would include both the material and structural elements. This may be done using the RDA. 
The RDA inelastic theory has been developed to describe the dynamic response of 
structures using both the dynamic modulus and modal damping ratios [8, 9]. The dynamic 
modulus is obtained based on the concept of the complex modulus of VEP materials, 
whereas the modal damping ratios are obtained by observing critically damped dynamic 
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systems in the steady-state response. It has been proved that the dynamic modulus is equal 
to the tangent modulus at selected moments in time in some plastic materials [10]. Also, 
internal damping is a significant factor, considered as a damage variable in low-cycle 
fatigue. The investigation in the paper [2] shows that internal damping that is unevenly 
distributed over the elements of a structure causes deterioration of the material named the 
fatigue damage. The eigenvalues of a structure must first be solved for a dynamic system 
relieved of external masses, which is required to critically damp it. This is necessary in 
order to calculate the modal damping ratios for systems composed of consistent or lumped 
external masses. A system composed of external masses has its own eigenvalues. Also, 
the RDA is an analytical method whereby resonant frequencies may simply be calculated 
using the zero modal damping ratios.  
 The aim of this paper is to demonstrate the validity and applicability of the RDA theory 
to the problem of the loss of stability of LIDI dynamical systems as non-conservative 
mechanical systems. 
 

2. VIBRATION AND INELASTIC INSTABILITY 

2.1. STEADY-STATE RESPONSE AND THE DAMPING RATIO 

The purpose of developing a mathematical model for the rheological behaviour of solids 
is to permit realistic results to be obtained from mathematical analyses of complicated 
structures under various conditions, such as sinusoidal, random, and transient loading. 
Here we consider a damaged long symmetrical rod (e.g., with a square or circular cross-
section A0) of length l0 and mass density ρ. Let us assume that the load variation is 
sinusoidal, where QA is the amplitude and Qω  is the frequency. Consider the single 
degree-of-freedom (SDOF) system of rod shown in Fig. 1. 
 The continuous model of a rod has only its own mass (m), and it may be modeled as a 
simple critically damped SDOF system shown in Fig. 1a) using the RDA. Consider the 
following sinusoidal law of stress, 
 ( )0 sinA tσσ σ σ ω= +   (1) 

with 0σ  being a constant and Aσ  a variable component of the cycle. Qσω ω=  is the stress 
frequency. 
 The starting point of RDA analysis is the governing differential equation [11], 
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  (2) 

where HE  is the elastic modulus, Yσ  the uniaxial yield stress, and ( )'Y vpY H tσ ε= +   
the VEP yield condition. The four properties at fixed step times are the extensional 
viscoelastic viscosity Kλ , the extensional viscoplastic viscosity Nλ , the viscoelastic 
modulus KE , and the viscoplastic modulus H'.  
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Figure 1. Models of rods: (a) a distributed critically damped RDA model; (b) an SDOF 

system 
  
 The particular solution (steady-state response) of the second-order governing equation 
in the case of critical damping ( K K NE Hλ λ′= , K K KE Tλ = , *

N H Tλ ′= , 
* D

KT T T= =  ) can be written as [12], 
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where ϕ  is the creep coefficient, D
Q QTδ ω ω ω= =  the relative frequency, and DT  the 

delay time. 
 First, we define a conservative mechanical system as one whose generalized forces are 
completely derivable from the potential energy function Q V qαα = −∂ ∂  (principle of 
virtual work). Further, for non-conservative systems, non-conservative forces must be 
added. A discrete linear SDOF system is characterized by one resonant frequency, and it 
may comprise a single element of mass and one or more elements of stiffness, or a single 
element of stiffness and one or more elements of mass. Consequently, we can form a non-
conservative SDOF system, as shown in Fig. 1b), which consists of its own mass and an 
attached external mass M, with the following equation of motion, 

 ( )sin ,eq eq eq A Qm u c u k u Q tω+ + =   (4) 

where 
 ( ) 0 01 , 2 , .eq eq cr eq eq eq Rm m M m c c k m k E A lη ξ ξ= + = + = = =   (5) 
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eqm  is the equivalent mass, where M mη =  is the mass ratio, whereas the equivalent 

damping is denoted by eqc , with ξ  as the damping ratio. eqk  is the equivalent axial 
stiffness, through which the internal damping is included taking into account the dynamic 
modulus [10], 
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The natural ω∗  and relative δ ∗  frequencies, respectively, are as follows, 
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 The well-know particular solution (steady-state response) is given by 

 ( )
*
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2sin arctan

1p Qu t A t ξδω
δ

  
= −    −  
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 Dynamic measurements supply information not only on the dynamic modulus RE , but 
also on the phase or loss angleα . The loss angle is a measure of the amount of energy 
dissipated in the material during one cycle. The variation of the loss angle with frequency 
δ is shown in Fig. 2. 

 
Figure 2. Variation of the loss angle with relative frequency δ 

 
 According to the principle of analogy [8], the phase angle at a point of a continuum 
must be described by both the critically damped RDA model and the corresponding SDOF 
system in the steady-state response. As a result, we can form an equality in order to obtain 
the VEP damping ratio based on the phase angle. 
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Fig. 3 (left) presents the modal damping ratio as a function of relative frequency δ   for 
the creep coefficient  2ϕ =  and three mass ratiosη . The dependence of ξ  on *δ shows 

that ξ  has negative values for * 1δ 〉 . As shown in Fig. 3 (right), the smaller the mass 

ratio, the greater the modal damping ratio. Similarly, the greater frequency *δ , the smaller 
the modal damping ratio. 

 
Figure 3. Variation of the VEP damping ratio with frequencies δ (left) and δ* (right) 

 

2.2. COMPLEMENTARY SOLUTIONS 

The usual form of the complementary solution is 
 ( ) 1 2

1 2
r t r t

hu t C e C e= + , (11) 
where C1 and C2 are arbitrary constants determined by the initial conditions imposed on 
the system, and r1 and r2 are the roots of the auxiliary equation 0eq eq eqm u c u k u+ + =  , 

eq eqk mω∗ =  and *2eq eqc mξ ω= . Consequently, 

 ( ) ( )* 2 * 2
1 21 , 1r r= − + − = − − −ω ξ ξ ω ξ ξ . (12) 

These values of r may be real and distinct, real and equal, or complex conjugates, 
depending on the magnitudes of ξ . 
 
2.2.1. Non-oscillatory stable motion, 1ξ >   

If ξ  is greater than unity, the values of r are real and negative. Therefore, no oscillatory 
motion is possible according to the complementary solution of the equation of motion, 
regardless of the initial conditions 0u and 0u  imposed on the system. This is a case of 
overdamping of the system, where 

 ( ) ( )* 0 0 0 *1ˆ ˆcosh sinh
ˆ

t
hu t e u t u u t−  = + +  

ξω ω ξω ω
ω

, (13) 
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and 

 * 2ˆ 1= −ω ω ξ . (14) 

2.2.2. Non-oscillatory critically damped stable motion,  1ξ =   

If ξ  is equal to unity, the values of r are equal to *ω− . Again, the motion is not oscillatory, 
and its amplitude will eventually diminish to zero. Here, the system is critically damped, 
where 

 ( ) ( ) *0 0 * 0 t
hu t u u u t e− = + + 

 ωω . (15) 

2.2.3. Stable motion oscillates about the equilibrium configuration and decays 
toward it,  1 0ξ> >   

If ξ  is less than unity, the values of r are complex conjugates. They are then 

 ( ) ( )* 2 * 2
1 11 , 1r i r i= − + − = − − −ω ξ ξ ω ξ ξ . (16) 

The complementary solution takes the following form, 
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where 

 ( )
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d
u uB u

 +
= +   

 

 ξω
ω

, (18) 

and 

 * 21d = −ω ω ξ . (19) 

This is a harmonic motion of the damped natural frequency dω , the amplitude 
*tBe ξω− of 

which decreases exponentially with time. 
2.2.4. Harmonic oscillatory undamped stable motion,  0ξ =   

The equation of motion of a dynamical system that is relieved of external masses ( 0η →
) and made from an idealized purely elastic material ( 0ϕ → ) becomes 0mu ku+ = . Two 
initial conditions must appear in the general solution, 

 ( )
0

0 cos sinh
uu t u t t= +


ω ω
ω

. (20) 

Physically, this equation represents an undamped free vibration. The angular natural 
frequency is 
 k m=ω . (21) 

2.2.5. Unstable motion oscillates about and grows toward another equilibrium 
configuration,  1 0ξ− < <   

If ξ  is between -1 and 0, the complementary solution is given by 
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 ( ) ( )* 0 0 0 *1cos sint d d
h du t e u t u u t−  = + + 

 
ξω ω ξω ω

ω
. (22) 

This is a harmonic unstable motion, which oscillates about and grows toward another 
equilibrium configuration. 
2.2.6. Unbounded non-oscillatory unstable motion,  1ξ < −   

If ξ  is less than -1, the complementary solution is in terms of hyperbolic functions, 

 ( ) ( )* 0 0 0 *1ˆ ˆcosh sinh
ˆ

t
hu t e u t u u t−  = + +  

ξω ω ξω ω
ω

. (23) 

This is non-oscillatory motion, and it is unstable and unbounded. 
 

2.3. DYNAMIC CRITERIA FOR THE STABILITY AND INSTABILITY OF 
MOTION BY DAMPING RATIO 

For the analysis of the stability of a mechanical system, the method of small vibrations is 
commonly used. The method entails the derivation of equations of motion for small 
displacements from the equilibrium state. Small displacements make it possible to take 
into account only those terms which are homogeneous and linear in the displacements or 
their derivatives. The homogeneous and linear equations derived in this manner have 
solutions whose dependence on time is characterized by their common factor pte .  
 The Liapunov definition of stability can thus be informally written as follows: The 
equilibrium state under consideration is stable if and only if, for all solutions of this form, 
the real part of p is non-positive. Otherwise, it is unstable. 
 All real dynamical systems in physics and engineering are characterized by stable 
steady state vibration, which involves the dissipation of some energy as heat, even if 
negative damping occurs, because of the member ( )22ξδ  in the steady-state solution of 
vibration. In case of the negative damping ratio, the amplitude of complementary 
vibration, which is multiplied with member pte , will not subside due to this member. A 
mechanical system with a positive damping ratio can be called a dynamically stable 
system, whereas one with a negative ratio can be called dynamically unstable. 
Consequently, the dynamic stability and instability of mechanical LIDI systems can be 
defined using the damping ratio, Table 1. 

Table 1. Dynamic criteria for the stability and instability of motion according to the daming 
ratio. 

1ξ >  Non-oscillatory stable motion 
1ξ =  Non-oscillatory critically damped stable motion 

1 0ξ> >  Stable motion oscillates about the equilibrium configuration and 
decays toward it 

0ξ =  Harmonic oscillatory undamped stable motion 
1 0ξ− < <  Unstable motion oscillates about and grows toward another 

equilibrium configuration 
1ξ < −  Unbounded non-oscillatory unstable motion 

 
50 



Fig. 4 shows various types of motion as determined by the damping ratio. 
 

 
Figure 4. Various types of motion determined according to the damping ratio 

 

3. RHEOLOGICAL-DYNAMICAL ASPECTS OF DAMAGE 

Once the VEP damping ratio is determined, it can be formulated as a function of the 
greatest value of the loss angle, 

 
( )

2

2

1max tan
1 1

∗−
=

+ + +

δξ α
η δ ϕ

. (24) 

 
 Let us now consider the quasi-static loading ( 0Qω → ) of an LIDI system that is 

relieved of external masses ( 0η → ), 

 
1max tan

1
=

+
ξ α

ϕ
. (25) 

In this case the damping ratio depends of the creep coefficient only. As the creep 
coefficient ϕ  is always higher than zero in accordance with the second law of 
thermodynamics, the damping ratio has a positive value. Therefore, a dynamical system 
is stable if quasi-static loading is applied. 
The RDA approach used to consider both the initial (undamaged) and damaged state of 
the cylindrical rod for the analysis of the influence of Poisson’s ratio on the creep 
coefficient has already been described in [12]. Fig. 5 presents a relation whose results are 
in excellent agreement with the experimentally obtained values. 
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Figure 5. Variation of the creep coefficient with Poisson’s ratio 

 
 Using the RDA inelastic theory, based on Bernoulli’s energy theorem and assuming 
that εE = σE/EH = 0.001, the creep coefficient is expressed by the formula 

 ( )
4 41 1 1 11 1 1

1 0 001 2 0 001 1 0 001 2 0 001. . . .

           = − − −    − ⋅ − ⋅           
ϕ µ

µ µ
. (26) 

Eq. (26) can be simplified by neglecting the products of second-order exponents, 

 
41 1 21 2

1 0 001 2 0 001 1 0 004. . .

   − = ≈ − ⋅ −   

µ µ
µ µ

. (27) 

Hence, the mathematical expression for obtaining the value of the creep coefficient from 
Poisson’s ratio is 

 
2

1 2
=

−
µϕ
µ

. (28) 

 Poisson’s ratio as defined in an idealized purely elastic material is an elastic constant. 
However, such a material is hypothetical because it does not exist in the strict sense of the 
word. In any mechanical deformation the deformation energy is not only stored elastically, 
but part of it is invariably dissipated by viscous forces, in accordance with the second law 
of thermodynamics. This dissipation is responsible for the time dependence of the 
mechanical properties of any real material. Consequently, the VEP Poisson ratio in the 
time domain chosen can be defined as suggested in [13], 

 ( ) ( ) D
t

T
e e gt e

−
= − −µ µ µ µ , (29) 

where 0 5e .µ =  and 0 333g .µ =  are the equilibrium and instantaneous Poisson ratios, 
respectively. 
 Experiments with ductile mild steel show that the measured value of Poisson’s ratio 
corresponds to the instantaneous value of 0.333. An axial fatigue experiment was 
performed on an isolated reinforced steel rod, l0=50 cm, Φ=1.9 cm [12]. TD = 0.0000967s 
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is the delay time for the steel rod (prototype). It has been proved that the limit of elasticity 
of ductile mild steel is in good accordance with the slenderness ratio of 0 105 26l i .= , 

where 0 4 0 475i I A . cmΦ= = = . The critical stress at the limit of elasticity of the two-

hinged rod is defined by Euler’s formula ( )22
0 187E HE l i MPaσ π= = , where EH = 

210000 MPa. Fig. 6 presents Poisson’s ratio as a function of time for the steel rod 
(prototype). 
 

 
Figure 6. Poisson’s ratio versus time for the steel rod (prototype) 

 
 At the limit of elasticity, the following equality has already been derived in [11], 

 
( ) ( )( )

2

2 3
00 l i i / Il i

=
π γϕ

. (30) 

This is the intersection of Euler’s and RDA buckling curves, which is important for 
determining the creep coefficient. Hence, 

( ) ( )
2 3 2

3
0

1 10 1675315 2
7 86 10 105 26

i I .
l i . .−

= = ⋅ =
⋅ ⋅

ϕ π π
γ

. 

The following symbols are used in the above expression, ( )3 1 0 1675315i I .Φ π= ⋅ =  
and γ , which is the specific gravity of steel. The value of the creep coefficient corresponds 
exactly to the value that can be obtained from Eq. (28) using 0 333g .µ = , 

2
2

1 2
g

g
g

= =
−

µ
ϕ

µ
. 

 Knowing the value of ( )tµ , we can calculate the change in the volume of the rod 
under tension or compression. The relative change in the volume resulting from uniaxial 
extension is as follows [13], 
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( ) ( ) ( ) 2 3

0
1 2 2

V t
V

= − − − +
∆

µ ε µ µ ε µε . (31) 

In the above equation the viscoelastic (VE) strain in the case of critical damping is given 
as follows [11], 
 

 1 1 D
t

E T

H
e

E
−  

  = + −
    

σ
ε ϕ . (32) 

Thus, ( ) 0V t∆ =  yields the traditional incompressibility relation for Poisson’s ratio, 
0 5e .µ = , only if all higher strain terms are neglected. However, since for the majority of 

materials 0 5.µ〈 , tension is accompanied by an increase in the volume, and compression 
by a decrease in the volume. The change in the volume of the steel rod (prototype) with 
Poisson’s ratio is shown in Fig. 7, where 

 ( ) ( )
0

1
V t

t
V

= +
∆

γ . (33) 

 

 
Figure 7. Relative change of volume versus Poisson’s ratio for the steel rod (prototype) 

 
Fig. 8 presents the variation of the greatest value of the loss angle with Poisson’s ratio 
according to the expression 

 1max tan
1 2

=
−

α µ
µ

. (34) 
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Figure 8. Greatest value of the loss angle versus Poisson’s ratio 

 
 The relationship of the damping ratio versus Poisson’s ratio is given by 
 1 2= −ξ µ µ . (35) 
The variation of the VEP damping ratio with Poisson’s ratio is shown in Fig. 9. 

 
Figure 9. Damping ratio versus Poisson’s ratio 

 
 The above analysis shows that any real material at the limit of elasticity is a VE 
material whose 0ϕ ≠  and which must thus be treated as damaged. Since the development 
of micro cracks induces a reduction in the stiffness of the material, the damage state can 
also be characterized by a variation in the elastic modulus [14]. If we suppose that the 
variation from an undamaged to a damaged state is equal to the dynamic modulus ER, the 
damage variable can be defined as follows [15], 

 ( )
( )2 2 0

1
11 lim

D , D
→

+
= =

++ + δ

ϕ ϕ ϕ
ϕϕ δ

. (36) 

Hence, the damage is described by a scalar variable D, which ranges between 0.666 and 1 
in the case of the steel rod (prototype), Fig. 10. 
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Figure 10. Damage variable versus the creep coefficient 

 
 Finally, Fig. 11 presents the variation of the VEP damping ratio with the damage 
variable according to the expression 

 1
2
D D= −ξ . (37) 

 
Figure 11. Damping ratio versus the damage variable 

 
It is clearly seen from the above expressions that the values of the VE Poisson ratio play 
an important role in dictating the response in a given medium. Poisson’s ratio is an elastic 
constant defined as the ratio of the lateral contraction to the elongation in the infinitesimal 
uniaxial extension of a homogeneous isotropic body. In a VEP material Poisson’s ratio is 
a function of time [13]. The damping ratio decreases with time in a stable LIDI system if 
quasi-static loading is applied. Energy is usually dissipated as heat due to viscous forces. 
Therefore, the motion oscillates about the equilibrium configuration and decays toward it, 
whereas the total energy in the system decreases with time. Also, the RDA improves the 
prediction of instantaneous values of mechanical parameters at the limit of elasticity, 
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which are defined by Poisson’s ratio only, i.e. 0 333g .µ = , 2ϕ = , 0.19245ξ = , 

0 666D .=  and 3R HE E= . 
 

4. PHENOMENA OF INELASTIC INSTABILITY BASED ON THE 
FREQUENCY OF EXCITATION 

Resonance occurs when the damping ratio is zero, i.e.  * * 1Qδ ω ω= = , and it can be 
expressed as follows, 

 * 1
1Q = =
+

ω ω ω
ϕ

. (38) 

When this happens, the amplitude of vibration increases without bound. In this case, 
motions are neutrally stable and present a transition between stable and unstable motions. 
 Fig. 12 presents the VEP damping ratio as a function of relative frequency, according 
to the expression 

 ( )
*2

*21 2 1
11

 
= − + +  ++  

ϕ δξ δ ϕ
ϕϕ

. (39) 

Three Poisson’s ratios are used in this analysis. The dependence of ξ  on *δ shows that 

the VEP damping ratio has negative values for * 1δ 〉 . It means that the corresponding 
motion is unstable (marked with red). 

 

Figure 12. Damping ratio versus frequency *δ : stable motion (blue) and unstable 
motion (red) 

 
 For the unstable LIDI system, energy must have been kept and added to the system 
because of the continuous increase in the amplitude of vibration. In this case, work is 
performed on a linear system by a viscous force due to the frequency of excitation, which 
must be higher than the resonant frequency. Therefore, the VEP damping ratio for the 
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unstable system must be negative. Unstable motion oscillates about the equilibrium 
configuration and grows toward another configuration.  
 Fig. 13 left shows the VEP damping ratio as a function of Poisson’s ratio using three 
relative frequencies. Two motions are described with two lines, stable motion ( * 0δ = , 
marked with blue), and unstable motion ( * 2δ = , marked with red). The neutrally stable 
or resonant motion ( * 1δ = ) is marked with black. The highest value of the damping ratio 
( 0.19245ξ = ) corresponds to the instantaneous Poisson ratio ( 0 333g .µ = ) in stable 
motion. Fig. 13 right presents the VEP damping ratio as a function of the creep coefficient. 
The highest value of the damping ratio corresponds to the instantaneous creep coefficient 
( 2ϕ = ).  
 

 
Figure 13. Damping ratio versus Poisson’s ratio (left) and damping ratio versus the 
creep coefficient (right): stable motion (blue), unstable motion (red), and neutrally 

stable motion (black) 
 
Consequently, the dynamic stability and instability of an LIDI mechanical system can be 
defined according to the value of the frequency of excitation, Table 2. 

Table 2. Dynamic criteria for the stability and instability of motion based on the frequency of 
excitation. 

*
Qω ω〈  * 1δ 〈  0ξ〉  Stable motion oscillates about the equilibrium 

configuration and decays toward it. 
*

Qω ω=  * 1δ =  0ξ =  Neutrally stable or resonant motion. 

*
Qω ω〉  * 1δ 〉  1 0ξ− 〈 〈  Unstable motion oscillates about and grows 

toward another equilibrium configuration. 
*

Qω ω〉  * 1δ 〉  1ξ 〈−  Unbounded non-oscillatory unstable motion. 

 
 It should be noted that in the case of quasi-static loading, i.e. when the frequency of 
excitation is zero, the VEP damping ratio always has a positive value, and the LIDI system 
is stable. However, increasing the frequency of excitation even insignificantly may make 
the system unstable if damage growth is nonetheless sufficient, or if external mass is 
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added. Otherwise, in the case of dynamic loading and initial conditions in the material, 
when there is no growth of damage and no external mass is added, the main cause of 
instability is a rise of the frequency of excitation. 

5. CONCLUSIONS 

This paper presents the use of the RDA for a systematic study of the vibration and stability 
of LIDI dynamical systems. The current literature appears to ignore the true nature of 
damping mechanisms. Summarized below are the paper conclusions, with 
recommendations for work in areas which have so far been neglected. The following 
points are emphasized: 
• In any mechanical deformation the deformation energy is not only stored elastically, 

but part of it is invariably dissipated by viscous forces, in accordance with the second 
law of thermodynamics. This dissipation is responsible for the time dependence of the 
mechanical properties of any real material. 

• In VEP materials Poisson’s ratio is a function of time that depends on the time regime 
chosen to elicit it. The function that has been suggested in [13] is used in this paper for 
the analysis of the steel rod (prototype). It is proved that the RDA improves the 
prediction of instantaneous values of mechanical parameters at the limit of elasticity. 

• The RDA approach has already been used for the analysis of the influence of Poisson’s 
ratio on the creep coefficient [12]. Hence, if the creep coefficient is to be used in 
conjunction with Poisson’s ratio, it must be determined using Eq. (28). 

• Because of the analogy, a critically damped RDA model has the same phase angle as 
the equivalent SDOF system in the steady-state response [8]. Therefore, if the VEP 
damping ratio is to be used in conjunction with the creep coefficient, it must be 
determined using Eq. (10). 

• The dynamic stability or instability of an LIDI system can be defined as follows: 
0ξ〉 ; Stable motion oscillates about the equilibrium configuration and decays toward 

it.  
0ξ = ; Neutrally stable or resonant motion.  

1 0ξ− 〈 〈 ; Unstable motion oscillates about and grows toward another equilibrium 
configuration.  

1ξ 〈− ; Unbounded non-oscillatory unstable motion 
• The RDA is very efficient when applied to inelastic MDOF systems, because it reduces 

a material non-linear problem to a linear dynamic problem, which allows the use of 
modal analysis. On the other hand, the classical solutions are not in accordance with 
the actual damping mechanisms of LIDI systems. Note that this procedure assumes a 
constant damping factor typically lower than 10%. 

• In the case of quasi-static loading, i.e. when the frequency of excitation is zero, the 
VEP damping ratio is always positive and the LIDI system stable. 

• In the case of dynamic loading and initial conditions in the material, the main cause of 
instability is a rise of the frequency of excitation. However, for frequencies that are 
smaller than the smallest resonant frequency of the LIDI system, the motions of all 
DOF will be stable. 
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