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Abstract:  
Linear static analysis of arbitrarily curved beams is considered. Metric of a Bernoulli-
Euler beam is rigorously defined and the weak form of the corresponding boundary-value 
problem is solved using isogeometric approach. Driving force behind present research is 
detail numerical analysis of recently developed model of an arbitrarily curved beam. This 
is obtained via in-depth analysis of convergence properties, as well as by comparison with 
other numerical models. Excellent agreement of results is obtained and improved accuracy 
of the model with the highest continuity is proved to be valid for most cases. 
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НЕКИ НУМЕРИЧКИ АСПЕКТИ ЛИНЕАРНЕ СТАТИЧКЕ 
ИЗОГЕОМЕТРИЈСКЕ АНАЛИЗЕ ПРОИЗВОЉНО КРИВЕ 
БЕРНУЛИ-ОЈЛЕРОВЕ ГРЕДЕ 

Резиме: 
У раду је размотрена линеарна статичка анализа произвољно кривих греда. Метрика 
Бернули-Ојлерове греде је строго дефинисана, након чега је, примјеном 
изогеометријског приступа, ријешена слаба форма одговарајућег граничног 
проблема. Основни мотив за провођење датог истраживања слиједи из уочене 
потребе за детаљном нумеричком анализом недавно развијеног модела произвољно 
криве греде. Ова анализа је извршена пажљивим разматрањем особина 
конвергенције посматраног модела, као и кроз поређење са другим нумеричким 
моделима. Добијено је одлично поклапање резултата при чему је потврђена 
чињеница да модели са највишим континуитетом често имају побољшану тачност.  
Kључне ријечи: произвољно крива греда, изогеометријска анализа, моделирање 
конструкција 
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1. INTRODUCTION 

 Curved beams are increasing in popularity as structural elements. They have 
significant aesthetical value and great versatility when it comes to free-form modeling. 
Introduction of contemporary materials with improved mechanical properties enabled 
development of structural forms not previously imaginable. Consequently, there is an 
increase in necessity for development of efficient computational models for these 
structures. Besides standard isoparametric finite element (FE) method, during past decade 
we have witnessed an extensive growth of so-called isogeometric analysis (IGA), which 
is ideally suited for analysis of curved structures, [1]. The logic of IGA approach is reverse 
in comparison with isoparametric concept, [2]. Namely, isogeometric approach defines 
the structural geometry primarily and, most often, exactly. This is enabled due to 
versatility of basis functions, non-uniform rational basis spline (NURBS) being the most 
prominent one. Afterwards, the same adopted basis functions are utilized for description 
of kinematics. IGA is developed as a tool which could bridge gap between design and 
analysis, which it partially succeeded but more research is in front of us. Some of the 
actual topics are trimmed geometries, optimal quadrature rules etc. [3]. 
 Analysis of curved beams in the frame of IGA is frequent, especially regarding 
Timoshenko beam model, see for example [4]. However, especially attractive feature of 
Bernoulli-Euler (BE) beam model is potential to introduce rotation-free models, since, for 
this theory, the rotation of a cross section is a function of translations of beam axis.  
 Aim of this paper is to investigate some numerical aspects of rotation-free IGA of an 
arbitrarily curved BE beam following recent findings given in [5], [6] and [7]. Detail 
analysis of influence of NURBS order and continuity on convergence properties is 
performed. 
 Paper is organized in five sections. After this brief introduction, some basic concepts 
regarding NURBS-based IGA modeling is presented. Numerical model is given in third 
section where abbreviated derivation of beam metric is given and followed with finite 
element formulation. Numerical analysis of two examples is performed in fourth section 
after which brief conclusions are drawn.  

2. NURBS-BASED ISOGEOMETRIC MODELING 

 Brief consideration of NURBS functions is given. For more detailed discussion on this 
topic, refer to [8] and [9]. 

2.1. Non-uniform B-spline 

 B-splines are piecewise polynomial curves defined as: 

                                                       ,
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where d
i ∈P   are control points and , ( )i pB ξ  are the pth  order B-spline basis functions. 

Line segments that connect consecutive control points form the so-called control polygon. 
The B-spline basis functions are defined by a knot vector 1 2 1{ , ,..., },N pξ ξ ξ + +=ξ  a non-
decreasing sequence of real numbers, called knots. The same knot value may appear in a 
knot vector more than once and it is called a multiple knot. The knots partition the 
parameter space into knot spans, which also have representations in a physical space and 
parent domain, Fig. 1. Each non-zero knot span represents an isogeometric finite element.  
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If the first and the last knot have multiplicity 1p + , the knot vector is said to be open. In 
this research, we employ only open knot vectors. Depending on whether the knot spans 
are equal or not, knot vectors may be uniform or non-uniform.  

                        
Figure 1. Physical space, parameter space and parent element 

With a given knot vector, the B-spline basis functions are defined by the Cox-de Boor 
recursion formula, starting with piecewise constants ( 0p = ): 
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Some of the important properties of basis functions are that they constitute a partition of 
unity and they are non-negative for any value of parameterξ . In each knot span, at most 

1p +  basis functions are non-zero, which is referred as a local support property. B-spline 
basis function is -p mC  continuous at knots of multiplicity m . Basis functions formed from 
open knot vectors are interpolatory at the ends of parametric interval and also at knots 
whose multiplicity is equal to a polynomial order. The properties of B-spline curves follow 
directly from those of their basis functions.  
 Non-Uniform Rational B-spline (NURBS) is a generalization of B-spline functions 
that allows us to exactly represent a wide range of objects that cannot be represented with 
simple polynomials, such as conic sections. Rational B-spline is obtained by a projective 
transformation of higher dimensional B-spline and can be defined as: 

                             , , ,
1 1 1
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where iw  are the weights and ,i pR  are the rational basis functions. Rational basis functions 
share the same main properties with the B-spline basis. If all weights are set to be equal, 
the NURBS curve becomes B-Spline.  
 An example of a cubic NURBS curve and corresponding rational basis is presented in 
Fig. 2. The curve is interpolatory and tangent to the control polygon at first and last control 
point and also at the sixth control point, since the multiplicity of the knot 3ξ =  is 3m =  
. Increasing the weight 5w  affects the curve shape only in the interval (1,3), where 
associated basis function is non-zero and a curve is pushed toward the control point. At 
the location of repeated knot, the curve is 0C continuous.  
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Figure 2. (a) NURBS curve with modification of 5w  (b) Cubic rational bases defined 

with knot vector { }0,0,0,0,1,2,3,3,3, 4, 4, 4, 4=ξ  and weights { }1,2,3,2,1,1,3,3,1=w  
(solid line). For 5 2w = , corresponding rational basis are changed (dashed line). 

2.2. Mesh refinement 

 The knot insertion ( h -refinement) consist in adding new knots in a knot vector while 
the geometry and parameterization of the original curve stay intact. Inserting new knot 
values result in splitting the existing elements into smaller ones. If inserted knot was 
already present in a knot vector, the continuity of basis functions will be reduced and no 
new elements will be created. In this research, h -refinement implies increasing the 
number of elements while polynomial order and continuity remain fixed.  
 The p -refinement (i.e. order elevation) strategy involves increasing the polynomial 
order of basis functions without changing the curve geometrically or parametrically. 
During the order elevation, continuity of basis functions is preserved by increasing the 
multiplicity of knots. The number of elements remains unchanged since no new knot 
values are added. 
 The fact that the knot insertion and order elevation processes do not commute, allows 
us to elevate an order on a coarsest mesh and than perform knot insertion. As a result, the 
continuity of basis functions can be increased. This is referred to as k -refinement 
strategy. Pictorial representation of p - and k  -refinement procedures, applied on a patch 
with three elements, is displayed in Fig. 3. 

3. THEORETICAL CONSIDERATIONS 

 Present derivations are based on the classic BE assumption: cross sections are 
absolutely rigid and orthogonal to the deformed beam axis. Consequence of this 
assumption is the degeneration of a 3D beam model into its 1D counterpart, Fig 4.  The 
convective frame of reference ( , , )ξ η ζ is utilized with appropriate base vectors 

1 2 3( , , )g g g . At the centroid, curvilinear coordinate axis ξ  correspond to the beam axis 
while η  and ζ  are aligned with the principal axes of the second moment of area of a 
cross section, Fig 4.  Due to introduced assumption, ξ  is the only independent variable 
for the analysis of plane BE beams. Notice that base vectors 2 3( , )g g  remain unit for all 
configurations. Present derivations are compact version of the ones given in [7] and [5]. 
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Figure 3. Higher-order meshes for: (a) p-refinement (b) k-refinement 

 
Figure 4. Degeneration of 3D beam into 1D; Coordinate systems and base vectors 

3.1. REFERENCE CONFIGURATION OF BEAM AXIS 

 Position vector of the beam axis is ( )ξ=r r  while its Cartesian coordinates are 
( )x xα α ξ= , 1, 2α = . Hence, the position vector of beam axis and its base vector are: 

                                     1 ,1 ,1, ,dx x
d

α α
α αξ

= == =
rr i g r i                          (4) 

where ,() k  designates differentiation with respect to the thk  coordinate of the system 

( , )ξ η . αi  are the unit base vectors of the Cartesian coordinate system, Fig. 4.  
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Classic relation of convective and arc-length coordinates is:  
                                2 2 2 2

,1 11 11( ) ,ds x d g d ds g dα ξ ξ ξ= = ⇒ =                          (5) 

where 11g  is the component of the metric tensor of a beam axis: 

                                       11
11

0
det .

0 1
g

g g gαβ αβ
 

= ⇒ = 
 

                                       (6) 

Base vector 1g   is collinear with tangent and its first derivative with respect to ξ  is: 

          1 1,1 1 2
1 1 11

11 11 11 11 ,1 ,11,     , , .g K K g K x x gα
α= = Γ = Γ =+g t g g g          (7) 

where K  is the modulus of curvature vector with respect to the Frenet-Serret frame of 
reference, while K  is its counterpart but with respect to the convective frame of reference. 

1
11Γ  is the Christoffel symbol of the second kind while the determinant of the contravariant 

metric tensor of the beam axis is 11
11g g= . The base vector of η coordinate follows from 

(7): 

                   1
2 2 1,1 11 1

1
,2 ,2 ,11 11 ,1, 1 1( ) ( ).x x x x

K K
α α

α
α α= = − ⇒ = ΓΓ −g i g g g          (8) 

3.2. METRIC OF DEFORMED BEAM AXIS AND REFERENCE STRAINS 

 The position vector of the beam axis in the deformed configuration is: 
                                                       ( ) ( ) ( ),ξ ξ ξ∗ = +r r u                                        (9) 
where ( )ξu  is its displacement vector while tangential base vector of the beam axis is: 

                                         *
,1 ,1 ,,1 11 ( ) .x u xα α α

α α
∗ ∗ == + =g r i i                                     (10) 

Notice the determinant of the metric tensor of the deformed beam axis: 
                                                        * * *

11 ,1 ,1.g x xα
α=                                                   (11) 

Additionally, normal base vector of the deformed beam axis is: 
                                         * *

2 2 ,2 2 2, 1.= + = =g g u g g                                     (12) 

where: 

         ( ) ( )1
,2 2 ,1 2 ,1 1 ,2 ,1 ,2 ,1

11

1 1, , .u B u B x x
g g

β β β
α β α α= − ⋅ = − ⋅ = − =u g u g g u g       (13) 

The modulus of curvature of the deformed beam axis follows, analogous to (7): 
                                    

1 2 2

1
11,1 11 ,1 .K K∗ ∗∗ ∗ ∗ ∗ ∗∗= Γ =+ ⇒ ⋅g g g g g                        (14) 

 Only Lagrange component of strain for linear BE theory is: 

                                           *
11 11 11 11 ,1 ,1

1 ( ) .
2

g g x uα
αε ε= − ⇒ =                                     (15) 

Additionally, the flexural strain of the beam axis is introduced as: 
                                         

21,1 1,1 2 .K Kκ ∗ ∗ ∗⋅= − = − ⋅g g g g                                     (16) 

Using the BE conditions, as well as neglecting higher order terms of displacement 
gradients, we can obtain following relation:  
            1 1

,11 2 ,1 2 ,11 ,
1

11 11 ,11 2 1 11 ,1 ,2( ( ) .) , u u xαα ακ κ⋅ − ⋅ == Γ Γ− ⋅ = −Γu g u g u u g        (17) 
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3.3. STRAIN AT AN ARBITRARY POINT 

 If we define position vectors of an arbitrary point in the reference and deformed 
configurations as:  
                  2 2( , ) ( )  , ( , ) ( )  ,η ηξ η ξ ξ η ξ∗ ∗ ∗∗= == + = +r r r g r r r g        (18) 
the base vector at an arbitrary point of a cross section with respect to ξ  coordinate is:  
                                                      1 1 2,1 .η= +g g g                                                   (19) 
Using the expression for the first derivative of normal base vector: 

                                                       2
1 ,Kd

dξ
= −

g g                                                   (20) 

base vector 1g  with respect to the reference and deformed configurations is:                                                                    

                            1 1 1 1 10 0
* * *
1 1 0 1 01 1

, ,

(1 ) ,

(1 ) 1

.   1

g g K

K g g K

K Kη η η

η η∗ ∗ ∗ ∗ ∗

− = =

= − ⇒ = = −

= = − −g g g g g

g g g g
                     (21) 

Now, strain at an arbitrary point of a cross section reduces to: 

                            ( )11
* *2 * 2

11 11 11 0 11 0 11
1 1

( ) ( )
2 2

.g g g g g gηε ε= = − = −                       (22) 

which, after insertion of XX and neglecting higher order terms of strain, transforms to: 
                                              [ ]11 0 11(1 )g Kε η ε ηκ= + − .                                    (23) 
This expression is derived rigorously, without any additional geometric assumptions 
besides the BE hypothesis and the ones regarding finite (but small) strain theory, [5].  

3.4. FINITE ELEMENT FORMULATION 

 Stress-strain relation for linear elastic material, at an arbitrary point, is: 
                                                    11 11 2

11( ) ,E gσ ε=                                      (24) 

where E  is the modulus of elasticity, while 11g  is the determinant of the contravariant 
metric tensor at an arbitrary point. Now, the internal virtual work can be written as: 
                                            11 2

int 11 11( ) .
V

W g E dVδ ε δε= ∫                                     (25) 

If we recall basic relations:  

                    11 11
11 11 0 11 2

0

1, , ,dV g d d d g g g g g
g

ξ η ζ= = =         (26) 

and introduce (23) into (25), the internal component of the virtual work reduces to: 
                                       int 11 11( ) ,W N M g d

ξ

δ δε δκ ξ= +∫                                     (27) 

where N   and M  are section forces energetically conjugated to the reference strains of 
the beam axis: 
                   2 11 2 11

0 0(1 ) , .
A A

N K g d d M g d dη σ η ζ η σ η ζ= + = −∫ ∫         (28) 

which differ from the standard section forces. After integration, we obtain: 
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                   11 2 11 2
11 11( ) ( ) ,          ( ) ( ),    N Е g A I M Е g I Iε κ ε κ= − = − +         (29) 

where the appropriate cross section geometric properties are introduced: 

         
2 2

0 0 0

(1 ) (1 ), , .
2A A A

K K IA d d I d d I d d
g g g K
η η η ηη ζ η ζ η ζ+ +

= = = =∫ ∫ ∫        (30) 

The matrix form of the equation (29) can be written as: 

                  1111 2( ) .
N A I

E g
I IM

ε
κ

   −  
= ⋅ ⇔ =     −      

R Dε          (31) 

For the isogeometric finite element with control points 1, 2,3...I N= , the relation between 
the vector of the reference strains of the beam axis and the vector of displacements of 
control points is introduced: 
                                             [ ]T

11, ,ε κ= =ε Bq ε                                      (32)                                                      
where the appropriate vectors and matrices are defined:   

( ) ( )

T
1 2 1 2

1,1 ,1 2,1 ,1 1 2
1 1

1,2 ,11 11 ,1 2,2 ,11 11 ,1

, ,

, .

I N I N

I I
I I I I

I I I I

x R x R
u u

x R R x R R

   = =   
 

 = =   −Γ −Γ  

B B B B B q q q q q

B q

   

  (33) 

These designations enable us to represent the internal component of the virtual work as: 
                                           T T

11 ,uR g d
ξ

δ ξδ= ∫q B DB q                                      (34) 

where: 
                                                 T

11g d
ξ

ξ= ∫K B DB                                      (35) 

is the linear stiffness matrix of a rotation-free BE isogeometric finite element, [7]. 

4. NUMERICAL STUDY 

 Two examples are studied: circular and a free-form cubic beam. Convergence analysis 
is performed in such a way that the order of convergence is observed as a function of a 
number of elements eln , analogously to [10]. Expected values are 1p +  for displacements, 
p  for normal force and 1p −  for bending moment, [11]. The order of convergence, for a 

mesh with eln  elements, is here determined as: 

    10 10
1

log log
1

el

el

h ex
n el

h ex
eln

S S n
nS S−

−  
 −−  

 

where exS is the reference solution while h
iS  is an approximate solution for a mesh with 

i  elements. Results obtained with very dense meshes are utilized as the reference values, 
except for the quantities for which these solutions are analytically defined. Since it is 
noticed that the order of convergence significantly oscillates for some variables and 
meshes under considerations, these parts graphs are truncated to enable readability.  

4.1. CIRCULAR ARCH 

117 



 Fig. 5 shows disposition and properties of a clamped circular arch. Prominent feature 
of this example is concentrated force at the middle of structure. Due to this load, model 
does not have 3C  at this section. Therefore, it is interesting to observe the behavior of 
quartic NURBS using this interelement continuity. 
 

   
Figure 5. Clamped circular arch under concentrated load.  

 Convergence properties for 0.067Kh =  are represented in Fig. 6, Fig. 7, Fig. 8, Fig. 9 
and Fig. 10. Convergence of deflections is fast, especially for quartics, Fig. 6. Quadratic 
NURBS returns the order of convergence which is lower than expected value of 3. For 
cubics, this order converges to predicted value. Regarding quartic NURBS, model with 

3C  continuity returns extremely low order of convergence, while solutions for models 
with lower continuities converge with very high orders.  
 Regarding convergence of normal force at the section S, it is noticed that all models 
return expected orders of convergence, Fig. 7. Exception is quartic NURBS with 3C  
continuity, which returns lower accuracy. This is due to the coupling of normal force with 
flexural strain. Notice that similar results are obtained at the support, disregarding the 
mentioned phenomenon of the highest continuity for quartic elements, Fig. 9. 
 Generally, convergence properties of bending moments are in line with analytical 
predictions. Fig. 8 reveals that the orders of convergence for models with quartic NURBS 
is oscillatory. Again, model with 3C  continuity has very low accuracy. Note that the 
orders of convergence for both models with cubic NURBS converge to the same value 

1 2.p − =  However, it is evident that model with 2C  continuity has average higher order 
of convergence, which results with better accuracy per DOF, compared to the 1C  model. 
At the support, quadratics and cubics behave similarly as at S. Nevertheless, quartics have 
very high accuracy while their orders of convergence could not be detected, Fig. 10. 
 Fig. 11 shows excellent correspondence of distribution of bending moments and 
normal forces along beam. Although not presented, straight BE beam element in Abaqus, 
B23, requires dense meshes for convergence of section forces.  
 Fig. 12 displays relative error of considered beam models with respect to 2D isotropic 
and 2D orthotropic model. 2D models are created using dense meshes of CPS3 elements 
in Abaqus. Orthotropic material model is made by multiplication of modulus of elasticity 
along η  direction and shear modulus with an empirically determined factor of 100Kh , 
[10]. This calibrated orthotropic material model is introduced in order to artificially 
introduce BE assumptions into general 2D model. Result is evident from Fig. 12b, where 
excellent correspondence of present and calibrated orthotropic 2D model is noticed, even 
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for high values of curviness .Kh  For more detail discussion on influence of curviness on 
beam models, see [7] and [10]. 

 
Figure 6. Convergence properties for the deflection at S using the h-refinement with 
different NURBS orders and continuities: a) relative error; b) order of convergence. 

 
Figure 7. Convergence of the normal force at S using the h-refinement with different 

NURBS orders and continuities: a) relative error; b) order of convergence. 

 
Figure 8. Convergence of the bending moment at S using the h-refinement with different 

NURBS orders and continuities: a) relative error; b) order of convergence. 
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Figure 9. Convergence of the normal force at A using the h-refinement with different 

NURBS orders and continuities: a) relative error; b) order of convergence. 

 
Figure 10. Convergence of the bending moment at A using the h-refinement with 

different NURBS orders and continuities: a) relative error; b) order of convergence. 

 
Figure 11. Distribution of: a) bending moment, b) normal force. 
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Figure 12. Relative difference of deflection at S: a) vs. isotropic 2D CPS3 model, b) vs. 

orthotropic 2D CPS3 model.  

4.2. CUBIC ARCH 

 This example deals with cubic arch presented in Fig. 13. Half of the structure is 
analyzed using symmetry. This example does not suffer from the problem of 
discontinuity, as the previous one, since the external load acts at the end point, due to 
symmetry. However, 2D model is created in Abaqus for comparison and it has well-known 
issues with pinned support due to stress and strain concentration. 
 Convergence properties are given in Fig. 14, Fig. 15, Fig. 16, Fig. 17 and Fig. 18. Fig. 
14 shows that all models yield very high orders of convergence for deflection, where only 
those for cubics are well-defined and converge to the expected value of 1 4p + = . Results 
in Fig. 15 suggest that some polynomial degrees return analytical values of the order of 
convergence for normal force at S but this is not true for all. Cubics with 1C  have 
improved accuracy and their orders of convergence could not be determined, as well as 
those for 3C  quartics and quintics. The same section force at the support has highly 
oscillatory behavior of the orders of convergence, Fig. 17. Interestingly, cubic and quartic 
NURBS with highest continuity return orders which are in line with expectations. It is not 
straightforward to make conclusion regarding relation of accuracy and continuity since for 
cubics, improved accuracy is evident for model with higher continuity, while it is contrary 
for quintics.  
 Convergence of bending moments reveals some expected properties. For the section 
at S, all models converge to the predicted value, except for the quintics with 4C  continuity, 
Fig. 16. Here, improved accuracy of models with highest continuity is evident. Highly 
oscillatory behavior of the order of convergence for bending moment at the support is 
observed in Fig. 18b and some parts of graphs had to be truncated. Close inspection 
suggests that cubic and quartics behave closely to predictions, and improved accuracy per 
DOF for models with the highest continuity is observed. Quintics return great accuracy 
while their orders of convergence are not detectable.  
 In Fig. 19, nearly full compliance of distributions of section forces is obtained via 
comparison with B23 element from Abaqus. Detail comparison of relative error of beam 
models with respect to the isotropic model, made of general S3 shell elements in Abaqus, 
is given in Fig. 20 for different values of curviness. It is evident that present model returns 
the worst compliance with general shell model. Concretely, present model is the stiffest 
of all four. This is due to the strictly defined metric of a beam, not present for straight B21 
and B23 elements, and BE hypothesis. 
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 Finally, distribution of stresses for two values of curviness is presented in Fig. 21. In 
Abaqus S3 model, maximum principle stress is displayed. For lower values of curviness, 
uniaxial stress/strain assumption of BE theory yields good estimate. Still, for extremely 
large values of curviness, all stress and strain components are significant. Additionally, 
stress concentration at the pinned support for S3 shell model becomes more prominent as 
the value of curviness increase. These extreme ranges of stress are marked with gray and 
black in legend for 1maxK h =  and they are hardly visible in given contour plot. 

     
Figure 13. Simply supported free-form cubic arch under concentrated load.  

       
Figure 14. Convergence of the deflection at S using the h-refinement with different 

NURBS orders and continuities: a) relative error; b) order of convergence. 

     
Figure 15. Convergence of the normal force at S using the h-refinement with different 

NURBS orders and continuities: a) relative error; b) order of convergence. 
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Figure 16. Convergence of the bending moment at S using the h-refinement with 

different NURBS orders and continuities: a) relative error; b) order of convergence. 

 
Figure 17. Convergence of the normal force at A using the h-refinement with different 

NURBS orders and continuities: a) relative error; b) order of convergence. 
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Figure 18. Convergence of the bending moment at A using the h-refinement with 
different NURBS orders and continuities: a) relative error; b) order of convergence. 

 
Figure 19. Distribution of: a) bending moment, b) normal force. 

    
Figure 20. Relative differences of deflections at S with respect to 2D model vs. maxK h . 
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Figure 21. Stress distribution on deformed configuration  for two values of curviness 

5. CONCLUSIONS 

 Thorough numerical analysis of recently developed computational model of an 
arbitrarily curved beam is performed via two examples. Due to rigorously defined metric 
and BE assumptions, present model is stiffer than standard beam models. It is concluded 
that the order of convergence is improved for the most meshes with highest continuity. 
However, for models that have interelement discontinuity of some order, increase in 
continuity must be considered carefully, since it could result with reduced accuracy.  
 Further research will be focused on a finite rotation and finite strain dynamic analysis 
of plane and spatial beams. 
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