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Rezime: 
Pouzdanost geotehničkih proračuna, opšte je poznato, u funkciji je kvaliteta ulaznih 
parametara, kako po pitanju opterećenja, tako i fizičko-mehaničkih svojstava tla. Pored 
navedenog na pouzdanost rezultata geotehničke analize utiče i odabir konstitutivnog 
modela tla. U radu se opisuju modeli tla i analizira pogodnost modela na realnom 
(izvedenom) geotehničkom projektu. 
Klјučne riječi:Model tla, geotehnički proračun, pouzdanost rezultata. 

RELIABILITY OF THE RESULTS OF THE CALCULATIONS IN 
THE FUNCTION OF THE SELECTED SOIL MODEL 

Abstract:  
The reliability of geotechnical calculations is, as it is generally known,  in function of the 
input parameters quality, both in terms of loads, as well as the physical and mechanical 
soil properties. In addition to above mentioned, reliability  of the results of geotechnical 
analysis is also influenced by selection of constitutive soil model. This paper describes 
soil models and analyzes the suitability of the model on a real (implemented) geotechnical 
project. 
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1. INTRODUCTION 

The model is an attempt to show the natural phenomenon, physical process and other 
occurrences in nature in a manner that enables their behavior to be predicted. In soil 
mechanics, there is a great need for the development of a model that will describe soil 
behavior when changing the stress state. The calculation of deformations in the soil, which 
are caused by the external load or by internal forces, is an important task that needs to be 
solved because the safety of the building depends on the deformations that occur during 
its construction and duration. Classical soil mechanics distinguish two separate states of 
soil behavior under load: 

• the state of minor deformations, which do not cause the fracture of the soil, is 
studied by using the theory of elasticity; 

• the state of major deformations, which cause the fracture of the soil, where the 
stresses in the soil are such that their small increase causes major deformations 
at constant velocity, is studied by the method of boundary state of the plastic 
balance. 

The elasticity theory is used in the study of stresses and deformations of soil at work level 
load, where the value of ground fracture has not been reached. Solutions are obtained by 
linear elasticity theories. The states of the progressive collapse is the middle between the 
elastic behavior and the boundary state. The progressive fracture theory studies the elastic-
plastic transition from the initial, linear-elastic state to the boundary state of the collapse 
with plastic deformations. The basis for obtaining a solution in a progressive fracture is 
the stress - deformation relation, i.e. constitutive term for the soil. For practical 
applications, within the load sizes, the soil is neither linearly elastic nor completely plastic. 
The real behavior of the soil is non-linear, very complex and variable depending on the 
conditions to which it is exposed, and this has a great influence on the selection of soil 
parameters for geotechnical calculations (Atkinson, 2000). In the last thirty years, a 
scientific approach to the constitutive soil modeling has been developed. The concept of 
critical soil condition was developed at Cambridge University in the 1950s by the ideas of 
Roscoe and asc. (1958, 1968). Further developments were contributed by Schofield, 
Wroth and Palmer (according to Chen 1975). Although the behavior model is originally 
developed for normally consolidated clays and slightly over consolidated clay, it is 
believed that with some adjustments, it can be used to describe the mechanical behavior 
of all types of soil. Idealization is needed to obtain mathematically simple constitutive 
models for practical application. A time factor is excluded in order to apply the theory of 
elasticity and plasticity. For the fracture, a plastic model is applied, and for conditions well 
below the breaking level, the elastic model (Maksimović, 2014). The criterion for 
evaluating of the model should consider the balance between the demands from the 
continuum mechanics point of view (theoretically), demands from real presentation of soil 
behavior (based on field and laboratory testing - experimentally) and demands for the 
simplicity of applying the model (numerically). These are the three basic criteria for 
evaluating the model in soil mechanics. Constituent equations are necessary in all soil 
mechanics methods: planning and evaluating laboratory and field testing, analytical and 
numerical prediction, or reverse strain and deformation analysis within the soil itself. All 
materials, including soil, have limited strength that limits the range of possible stress 
states. The stress - deformation relation for soil behavior is extremely nonlinear, inelastic, 
depends on the previous stress and deformation history, and depends on the rate of 
deformation, boundary conditions, and other factors (Ishihara et al., 1975). 

586 



2. CONECTION BETWEEN TENSION AND DEFORMATION  

The connection between tension and deformation represents the Model material or its 
constituent equation. Models of soil and rock materials are generally presented as a 
relation between infinitesimal changes in the value of the effective stress and the 
infinitesimal change of deformation values. This relation can be presented in the form 
(Tymoshenko, Gudier, 1962): 

                                                         ' Mσ ε= ⋅

                                                                    (1) 

where M is the matrix of material stiffness. 

3. SOIL MODELS AT STATIC TEST CONDITIONS 

The elastoplastic model gives a more realistic picture of the deformations formed before 
the final plastic fracture (Figure 1.) The real ground approximately corresponds to the 
model of ideally elastic materials, only for the limited range of application of the main 
stresses. For the problems discussed so far, satisfactory solutions were provided by the 
theory of elasticity and solutions using the oedometric soil model. 

 
Figure 1. Stress - strain curve 

When the ratio of the main stresses exceeds a certain range, deformations begin to increase 
much faster than the strain and eventually become very large. This is the boundary state 
of the plastic balance, in which a plastic flow with significant deformations begins. Soil 
behavior depends on the stress and deformation relation in the given conditions. The most 
commonly used, oedometric model, is a curing model as well as three-side models with 
lateral pressure. In shear tests with major deformations, models with softening to fracture 
occur. The most commonly used laboratory test to obtain the relation between stress and 
deformation is an oedometric test. 

                                                  

'

(tan )
z

k gent
z

dM
d
σ
ε

=
                                                       (2)                                                                                                    

 
 
 

587 



The strain of the deformation Δε_z, due to the increase in stress Δσ'_z, for the initial 
stress, pₒ, is:  

                                                  

'
0

0

'

'( )

zp
z

z
k zp

d
M

σ σε
σ

+∆

∆ = ∫
                                              (3)                                                                                                  

The solution of integral depends on the shape of the functional link between the 
compression modules M_k and strain σ'_z. There is a great deal of attempts to improve 
the concept of the model, which increases the number of parameters, some of which can 
be determined, and some are assumed to get good agreement between a mathematically 
determined model and data obtained by tests. And when a model simulates the test well, 
which is a prerequisite for its acceptability; there are number of other tests that need to 
show that it will behave satisfactorily by arbitrary stress strains in various practical 
problems. The constituent equations in the continuum mechanics represent an analytical 
expression of the relation between the instantaneous stress state at a material point of the 
continuum and the history of deformation states through which the close environment of 
that point has passed. Through these equations, the mechanical properties of the material 
are included. For now, there is no constituent equation that describes the complexity of 
the mechanical behavior of the soil for the various conditions in which the soil can be 
found. 

4. ELASTIC MODEL 

These models include: Linear-elastic model, Duncan-Chang model (nonlinear hyperbolic 
elastic models) and anisotropic elastic model (cracked rock model). 

4.1. Linear-elastic model 

One of the simplest soil models is a linear elastic model in which stress is directly 
proportional to deformations. This model is most commonly used in the calculation of the 
settlement in soil mechanics because it corresponds to the assumption that the ground 
behaves in a linear resilience in minor deformations. The interpretation is shown in Figure 
2 a). 

 
Figure 2. a) Explanation of the assumption of linear soil behavior; b) Definition of 
modules E0 and E50 for standard drained three-axis test (Yong, Townsend, 1980) 
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The linear elastic model is based on Hooke's law. There are four parameters of material 
for an elastic model: Young's modulus of elasticity E, Poisson's coefficient v, coefficient 
of volume deformation K and shear modulus G, and only two are required for the full 
description of the material. The proportionality constants are Young's modulus of 
elasticity E and the effective Poisson coefficient v. Young's module is used as the basic 
stiffness module in the elastic soil model. Special attention is needed for the adoption of 
stiffness parameters in the calculation, because it is shown that the assumption of linear 
soil behavior in minor deformations is often incorrect. Namely, the materials demonstrate 
nonlinear behavior at the very beginning of the load. Typically, the initial inclination of 
the deformation curve is marked as E_0, and the value of the secant module at 50% 
strength is marked as E_50 (Figure 2 b)). For materials with a larger scope of linear 
elasticity, it is more realistic to use E0, but the E_50 is generally used for soil loading. 
Considering the problems of unloading, such as tunnel excavations, etc., it is necessary to 
use a parameter that can be determined at the return deformations, i.e. the release (Figure 
1, line 4), E_ur instead of E_50. For the soil, both the E_ur release module and the load 
modulus E50 tend to grow with increasing pressure. Therefore, higher stiffness can be 
expected in deep layers of soil compared to shallow layers. The rigidity is much higher for 
relieving and reloading than for the primary load. When a model with a constant modulus 
of elasticity (compressibility) is used to represent the soil behavior, a value corresponding 
to the level of stress and the corresponding strain of stress must be selected. Poisson's 
coefficient is by definition the ratio of longitudinal and transverse deformation: 

                                                    

transversal

longitudinally

εν
ε

=
                                                            (4) 

In the soil, this ratio is not nearly as simple as code, for example steel rod or concrete cube. 
When considering Poisson's soil coefficient, one should always keep in mind that only the 
pores are deformed in the soil, while the solid particles, according to the basic assumption, 
do not change their shape for the level of work stresses. Deformation occurs by mutual 
sliding and rolling of particles at the expense of pore loss. Since the lateral expansion is 
prevented in the oedometric test, this is the lateral deformation ε_b = 0, which leaves only 
an upright deformation ε_z, and from the equation 4 it follows that for such a Poisson 
model the coefficient is ν = 0. In the drained tri-axial test, the Poisson coefficient ν can be 
determined for each of the specially selected stress levels, i.e., the incremental stress Δσ_z 
as well as the secant and tangent module, according to the: 

                                                   2
z

z

νε εν
ε

∆ −∆
=

∆                                                                              (5) 
ε_z - upright, axial deformation; 
ε_v - volume deformation. 
The choice of the Poisson coefficient value is simple when elastic model or a Mohr-
Coulomb model of soil is used, in contrast to other cases when it is much more complex. 
The relation between Young's module E and other stiffness modules, such as shear 
modules G, the compression module K, and the edo-modulus module E_oed, is given by 
the following equations (Hill, 1950): 

                                                     2(1 )
EG
ν

=
+                                                                (6) 
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4.2. Nonlinear elastic soil model 

A nonlinear elastic soil model was suggested by Duncan and Chang 1970, analyzing the 
deformations of embankments and dams. The model parameters can be obtained from the 
results of a three-axis test. The stress-deformation curve is hyperbolic, which connects the 
deviator stress (σ_1-σ_3) and the axial deformation ε according to the expression (Konder, 
1963, Konder et al., 1963, 1965): 

                                                   1 3( )
a bε ε

σ σ
= −

−                                                         (9) 
Depending on the stress state and the deformation trace, the model contains three soil 
modules: the E_i starting module, the E_t tangent modulus and the load modulus - Eur 
listed in Table 1. 

Table 1. Modulus of elasticity in non-linear elastic soil model 
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E_i - initial tangent module; 
K_L - modular load number; 
P_a - atmospheric pressure (p_a = 100 kPa, used as 
a reference parameter); 
σ_3 - minor main stress n, the exponent determining 
the impact of lateral pressure on the initial module.  
Where n and K are numbers (constants) derived 
from the results of the drained tri-axial laboratory 
tests.  
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φ - angle of internal friction; 
c - cohesion; 
R_f - ratio of asymptote of hyperbole and shear 
strength (from 0.75 to 1.0), but can also be 
determined from the results of the drained three-axis 
test; 
σ_1 - maximum main stress; 
σ_3 - minimum main stress. 
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Unlike the tangent module, the load-relief module is 
not dependent on the state of shifting stresses. This 
module can be calculated directly from the curve of 
the results of the drained three-axis test, based on 
unloading - reloading (line 4 in Figure 3). 
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Poisson's coefficient of nonlinear elastic soil model can be considered as a constant, not 
depending on the state of stress; from the equation (5) or it can be calculated from the 
volume change module, which depends on lateral stress. The volume change module is 
given by the following expression: 

                                                     

3
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B K p
p
σ 

=  
                                                              (10) 

B_m - modulus of volume change; 
K_m - Module number; 
m - the exponent of the volume module. 
The relation between the volume module and the Poisson coefficient can be determined 
by the theory of elasticity, so hence: 
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                                                                     (11) 

Such module can be obtained by testing in the hydrostatic state of stress. 

5. THE CONCEPT OF THE THEORY OF PLASTICIFITY 

It consists of three basic links: the condition of relaxation, the law of relaxation and cure 
and the condition of fracture. Plastic constitutive models differ according to the assumed 
function of release. The stress and deformation ratio assumes that the material is acting 
linearly elastic before the relaxation in accordance with the elastic parameters E and ν 
determined in the model and perfectly plastic after release. The total deformation or ratio 
of deformation components is: 

                                                      e pd d dε ε ε= +
                                                      (12) 

dε - total deformation; 
dε_e - elastic deformation; 
dε_p - plastic deformation. 
Basic plastic models: 

• Mohr-Coulom model, 
• Drucker Prager model, 
• Von Mises model, 
• Tresca model, 

of which the simplest and most extensively applied in geotechnics is Mohr -Coulomb 
model. Figure 3 gives graphical representations of the main stresses in the space for 
classical fracture theories. 
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Figure 3. Classic fracture theories in the main stress area 

Table 2. Overview of basic plastic models 
Model Graphic display Fracture criterion Description 
Mohr - 
Coulomb's 
criterion for 
fracture for a 
straight state 
of stress 

 *c tgτ σ ϕ= +  
A criterion written in 
the form of the 
maximum and 
minimum  major stress, 
can be written for a 
general stress state in the 
form of three stress 
invariants. 

τ - shift strain; 
σ - normal 
stress; 
c - cohesion 
material; 
φ - angle of 
friction. 

Drucker - 
Prager 
model 
is given as a 
function of 
relaxation 

  
 
 
 

23 sin 0mf J cσ φ= + − =
 

σ_m - main 
stress, 
J_2-second 
stress invariant, 
c, φ - maximum 
or peak 
cohesion and 
friction angle 
of the material 

Von Mises 
model 

  

2 2 0( ) 3 0f J J σ= − =
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σ_o -equivalent 
uni-axial stress 
determined by 
tests, 
J_2 - second 
deviator 
invariant of 
stress. 
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Tresca 
model 

  
 
 
 

2 cos 0f q kθ= ⋅ − =  

f - function of 
relaxation 
q - second 
stress invariant 
k-maximum or 
peak uniform 
pressure 
compressive 
strength of the 
material. 

6. ELASTIC - PLASTIC MODELS 

This group of models includes:  
• Ideally elastic - an ideal plastic model, 
• Cam Clay and modified Cam Clay model, 
• Deformation-softening model. 

6.1. Ideally elastic - an ideal plastic model 

Typical stress-deformation curve of linearly elastic - ideally plastic models is shown in 
Figure 4. The stresses are directly proportional to the deformations until the point of 
delivery is reached, and after the point of release the stress-strain curve is horizontal. 

 
Figure 4. Elastic - an ideal plastic model 

The elastoplastic theory, which describes the behavior of Figure 4, consists of the 
following elements: 
Relative deformation is disassembled, on elastic and plastic component: 

                                                
{ } { } { }e pd d dε ε ε= +

                                                             (12) 
The elastic component of deformation can cause changes in stress. Elastic constituent 
equation has the form: 

                                                 { } { } { }e ed C dσ ε= +
                                                (13) 

The relaxation function is defined by the form: 

                                               
( , , , )x y z xyf f σ σ σ τ=

                                                 (14) 
or in matrix form: 
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{ }fdf dδ σ

δσ
 =                                                                  (15) 

If f < 0, the function describes the elastic property of the material. When f = 0, it describes 
strength or plasticity law. The plastic potential function takes the form: 

                                                
( , , , )x y z xyg g σ σ σ τ=

                                                (16) 
The direction of the plastic deformation increment is determined by the law of flow:  

                                                     
{ }p

gd δε λ
δσ
 =  
                                                      (17) 

Where: 
g - the function of the plastic potential 
λ - plastic scalar factor 
The dλ must always have a positive value, and it is obtained from the condition that the 
function of relaxation is constant when fracture. 
In geotechnics, Mohr-Coulomb's Law of Strength is most often used for the law of release: 

                            

1 3 1 3sin cos cos 0
2 2

f cσ σ σ σϕ ϕ ϕ+ −
= − + ⋅ =

                      (18) 
Usually the Mohr-Coulomb function of release is used for the plastic potential function, 
where the angle of internal friction φ is replaced by the angle of dilation ψ. Tangens of 
dilation angle is the ratio of increment of plastic volume deformation and plastic increment 
shear deformations (GeoSlope). 

6.2. Cam Clay and a modified Cam Clay model 

Cam Clay and modified Cam Clay models are in the group of elastoplastic models with 
curing (Atkinson and Bransby, 1978 and Britto and Gunn, 1987). Figure 3 explains the 
procedure of choosing an edometric test or isotropic compression test as one that can 
provide satisfactory data for modeling the Cam Clay model. Figure 5 (a) shows the ratio 
of the effective stress p' and the volume change ν, where ν = 1 + e, a, e, is the porosity of 
the sample. Figure 5 (b) shows the same pressure ratio shown on the natural logarithm 
scale, lnp'. Further simplification can be done when the hysteresis loop that occurs when 
unloading and reloading is replaced by the direction. The approximation is sufficiently 
accurate for the needs of further calculations. This view describes the actual state of the 
soil during over-consolidation, unloading and reloading. The direction of over-
consolidation and the direction of normal consolidation show the properties of an elastic - 
plastic hardening curve of stress - deformation relation. The direction of over-
consolidation corresponds to the linear-elastic part and the direction of normal 
consolidation to the plastic-curing part. 
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Figure 5. Consolidation and stress ratio 

6.2.1. Release function in the Cam Clay model 
Plastic hardening means the possibility of expanding the surface of the release. The 
description of the expansion of the release surface is achieved by introducing a variable 
for the plastic deformation into a function of release. In Cam Clay models this is a variable 
volume deformation ε_pv so that now the function of release has the form:  

                                               
( , , , , )x y z xy pvf f σ σ σ τ ε=

                                                    (19) 
In both models, the associated law of flow is assumed. In the Cam Clay model, the release 
function is given by the expression: 

                                             
ln 1

x

q pf
M p p

 ′
= + − ′ ′⋅                                                  (20) 

while in the modified Cam Clay model it is given by the term: 

                                            

2
2 22 x

qf M p M p
p

′ ′= + −
′                                                    (21) 

where:  
p' - average effective stress; 

                                               
( )1

3 x y zp σ σ σ′ ′ ′ ′= + +
                                                  (22) 

q – stress deviator; 

                        
( ) ( ) ( )2 2 21

2 x y y z z x xyq σ σ σ σ σ σ τ = − + − + − +                 (23) 
M – Parameter of the material as a function of the angle of internal friction φ or direction 
gradient of the critical state when this is displayed in p'- q coordinates. 

                                             

lnexpx
k pp
k

ν
λ

′Γ − − ′ =  −                                                  (24) 
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Figure 6. The results of laboratory tests of isotropic compression and uniaxial 

compression (edometric test) shown in the diagram ν - specific volume / ln p'- pressure 
Parameters from the picture: 
ν - the specific volume, defined by the pore-coefficient e, ν = 1 + e; 
λ - the direction slope that represents the relation of the specific volume ν and the natural 
logarithm of average effective stress ln p', during isotropic compression of normally 
consolidated soil and 
κ -  the direction slope which represents the ratio between ν and ln p' in the elastic region 
N and N_0 in Figure 6 are specific volumes of normally consolidated soil at the pressure 
p'= 1 kPa, and ν_k i ν_k_0 are of the specific volume of the over-consolidated samples 
when p' = 1 kPa. The position of the possible κ-forms is not unambiguous, but depends on 
the stress of the over-consolidation p'_c. Figure 7 a) and b) show Cam Clay models in the 
coordinate system p'- q.       

 
Figure 7. a) Cam Clay model  b) Modified Cam Clay model 

If pc' denotes the over-consolidation stress, i.e. the intersection of the direction slope κ and 
the direction slope λ, then in the Cam Clay model, the dimensions p'_x and p'_y are related 
by the expression: 

                                                        ln ln 1x cp p′ ′= −                                                      (25) 
and in the modified model: 

                                                            0.5x cp p′ ′=                                                          (26) 
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The size Γ denotes the specific soil volume on the line of critical states, for p'= 1 kPa, or 
ln p' = 0 (corresponds to the values of N in Figure 6). The line of critical states is given by 
the expression: 

                                                          ln pν λ ′= Γ −                                                                   (27) 
and represents the state of the material with expansion angle of ψ = 0. 

6.3. Deformation-softening model 

This model is elastic - softening - plastic and consists of three linear parts. The linear part 
grows to maximum shear strength, a softening part, in which the shear strength decreases 
from maximum to residual strength and the part in which the strength does not change 
(residual strength, Figure 8).  

 
Figure 8. Deformation - softening model 

The release function for this model is given through the positional stresses q and the 
undrained strength of c_u: 

                                                ( ), 3p uf f q cσ ε= = −
                                        (28) 

The fracture at the shear strength c_u is equal to (σ_1 - σ_3) / 2. Shear stress q can be 
expressed over another invariant of stress J_2, q = 3J_2. 
Each of these models has advantages and disadvantages, which are substantially limiting 
their usability for numerical simulation of structure and soil interactions. Basic 
characteristics of constitutional soil models available in commercial computer programs 
for the calculation of geotechnical structures are shown in Table 3. 

Table 3. Basic characteristics of constitutional soil models for calculation of  geotechnical 
structures 

Model The basic curve Elements of soil 
behavior 

Deficiency Applica
tion 
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Linear - 
elastic 

 

- linear elastic 
 behavior 

- unlimited strength; 
- no dilatation occurs; 
- Unique stiffness for 
load /unloading 
- dependence between 
volume and shear 
stiffness 

GSU 
(monoli
thic 
rocks) 

Ideally 
elastic - 
plastic 

 

- linear elastic 
behavior to 
fracture; 
- a unique 
fracture surface; 
- unique 
dilatation in case 
of fracture 

- Unique stiffness for 
load / unloading 
-unique stiffness 
depending on the state 
of stress and 
deformation 

Robust 
load 
control 

Harden
ing 

 

- shearing curing; 
- stiffness 
 reduction 
depending on the  
state of 
deformation 
- dependency of 
starting stiffness 
from the stress 
condition 

- lack of peak strength 
reduction 
- lack of critical 
condition - additional 
rules for unrelated 
behavior 

Sand 
gravel 
rigid 
clay 

A 
critical 
 state 
model  

- critical state; 
- isotropic cure; 
- reduction of  
peak strength 

- critical condition Soft 
clay 

7. PHYSICAL MODEL 

The reliability of the results in the function of the selected constitutional soil model was 
analyzed on the physical model. In the natural slopes after the excavations, the soil mass 
movement has occurred, which was observed over time by using an inclinometer, on the 
inclinometer borehole IBK 11 (Figure 9). The determined soil parameters for all layers on 
the engineering-geological profile (Figure 10) are shown in Table 4. 
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Figure 9. Movements on inclinometer  IBK 11  

 
Soil model number 1 represents Mohr-Coulomb model, isotropic stiffness, Mohr-
Coulomb model, orthotropic stiffness, is represented by soil model number 2 and modified 
Cam-Clay model, isotropic stiffness, is represented by soil model number 3 in the Table 
4. 
The results of the movement were obtained using a software package Rocscience Phase 2 
v.6.0., based on the finite elementh methode (FEM).  
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Figure 10. The engineering-geological profile  

Table 4. Input parameters for soil models obtained by testing 

Soil models 1 2 3 
Soil 1 2 3 1 2 3 1 2 3 
γ [kN/m3] 16.5 19.5 20.0 16.5 19.5 20.0 16.5 19.5 20.0 
ϕ [⁰] 16 

(10) 
16 
(11) 

18 
(12) 

16 
(10) 

16 
(11) 

18 
(12) 

   

c [kN/m2] 15 
(3) 

25 
(5) 

40 
(8) 

15 
(3) 

25 
(5) 

40 
(8) 

   

M_v [MPa] 5.4 13.1 22.8    5.4 13.1 22.8 
ν [-] 0.40 0.36 0.34    0.40 0.36 0.34 
E [MPa] 2.52 7.79 14.81    2.52 7.79 14.81 
G_12 [MPa]    2.00 4.41 44.78    
E_1 [MPa]    4.00 8.30 87.00    
E_2 [MPa]    6.00 12.5 130.0    
E_z [MPa]    5.00 12.0 120.0    
α [⁰]    3 3 3    
Ν_12 
=ν_2 
=ν_2z 

[-]    0.40 0.36 0.34    

M [-]       0.59 0.37 1.21 
λ [-]       0.1 0.052 0.096 
κ [-]       0.03 0.01 0.02 
ν [-]       0.40 0.36 0.34 
OCR [-]       1 1 1 
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8. CONCLUSION 

While solving geotechnical problems, we are able, by using computers, to apply some of 
the listed soil models included in the programs. Most computer programs, using the finite 
element methode, are able to determine the state of deformation and displacement, which 
is not possible by the limit balance method. Determination of the state of deformation and 
displacement is of crucial importance in most geotechnical engineering problems. Using 
the FEM (Finite Element Method), a more realistic estimation of the stress, deformation 
and shift distribution is possible, as well as finding the local fracture zone during the 
construction of the building. In addition, it is possible to more realistically look at and 
describe the geotechnical environment as heterogeneous, anisotropic, discontinuous, and 
changes in the conditions of equilibrium of the excavations. The reliability of the 
established geotechnical parameters has the greatest influence on the success of the 
geotechnical calculation. But the applicability of the soil model (Figure 9) also has a major 
impact on the results of the geotechnical calculation, and this should be given special 
attention. 
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