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Abstract: Korišćenje zemljišta/zemljišni pokrivač (LULC) ima značajan uticaj na 
degradaciju zemljišta, eroziju i dostupnost vode, stoga kartiranje prostorne raspodjele 
LULC je od suštinskog značaja za upravljanje zemljištem. Precizno kartiranje LULC 
klasa pomoću upotrebom daljinske detekcije zahtijeva robusne metode klasifikacije. 
Posljednjih se godina koriste razni algoritmi klasifikacije i satelitske slike. Za ovu 
studiju korišćeni su Sentinel-2 satelitski snimci umjerene prostorne rezolucije. Kako bi 
se ocijenio potencijal ulaznih snimaka i izradila karta korišćenja zemljišta u složenom 
urbanom području Banja Luke, Republika Srpska s najvećom mogućom preciznošću, 
primijenjeni su algoritmi za mašinsko učenje: Supported Vector Machine (SVM) i 
Random Forst (RF). Ukupna tačnost klasifikacije od 90,82% s kappa vrijednošću 0,87 i 
88,29 s kappa vrijednšću od 0,84 postignuta je pprimjenm SVM i RF. Rezultati, 
prezentovani u ovom radu, su pokazali da algoritmi za mašinsko učenje i Sentinel-2 
satelitski snimic mogu efiksno koristiti za izradu karata korišćenja zemljišta. Rezultati, 
prezentovani u ovom radu, su pokazali da algoritmi za mašinsko učenje i Sentinel-2 
satelitski snimic mogu se efiksno koristiti za izradu karata о korišćenju zemljišta. 

Keywords: korišćenje zemljišta/zemljišni pokrivač, Sentinel 2, SVM, RF 

LAND USE / LAND COVER MAPPING FROM SENTINEL 2 
DATA USING MACHINE LEARNING ALGORITHMS.)  

Abstract: Land cover/land use (LULC) have an important impact on land degradation, 
erosion and water availability therefore mapping of patterns and spatial distribution of 
LULC is essential for land management. Accurate mapping of complex land cover and 
land use classes using remotely sensed data requires robust classification methods. 
Various classification algorithms and satellite images have been used in recent years. For 
this study, moderate resolution Sentinel-2 image was used. In order to evaluate the 
potential of the input image and derive land cover map in complex urban area of Banja 
Luka, Republic of Srpska with highest possible precision, two machine learning 
algorithms where applied: Supported Vector Machines (SVM) and Random Forst (RF). 
An overall classification accuracy of 90,82% with kappa value of 0,87 and 88,29 with 
kappa value of 0,84 was achieved using SVM and RF. The study showed that of 
machine learning algorithms on Sentinel-2 imagery can results in accurate land cover 
maps. 

Keywords: land cover/ land use, Sentinel 2, SVM, RF 
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1. INDRODUCTION 

Land cover refers to the physical characteristics of earth’s surface, captured I distribution 
of vegetation, water, settlements while land use refers to the way in which land has been 
used by humans and their habitat [1]. Understanding landscape patterns, changes and 
interaction between human activities and natural phenomena are essential for proper land 
management, decision improvement and understanding different changes such as 
degradation level of forest and wetlands, rate of urbanization, intensity of agricultural 
activities, landslide, erosion e.g. Land use/ land cover classification is time-consuming 
and expensive process. Remotely sensed data from various earth observation satellites can 
provide accurate and timely geospatial information of urban and per-urban areas at diverse 
spectral, spatial and temporal scales [2]. In recent decades, remotely sensed dataset are 
become an attractive alternative to ground based survey and mapping methods for 
documentation, characterization and quantification of the LULC. The accuracy of the 
produced maps is affected by spatial and spectral resolution of remotely sensed imagery, 
cloud cover, quality of training data and image classification techniques. RS data 
classification is based on a unique relationship between a land cover class and its reflected 
radiation at certain wavelength (reflectance) contained in a spectral band of an image, e.g., 
a one-pixel–one-class relationship [3]. The classification of LULC in urban areas is 
challenging dual heterogeneous landscapes and multiple object within pixel. Mixed pixel 
is a common confounding factor in classification using moderate resolution datasets due 
to the large pixel size. To resolve these issues investigators have utilize different 
supervised classification techniques such as maximum likehood, artificial neutral network, 
decision tree, supported vector machine, random forest etc. Table 1. Shows application of 
different classification techniques for LULC class delineation. 
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Table 1. Classification techniques for LULC class delination 

Authors Platform Classification 
technique 

Accuracy 

Kappa  Overall 

[4] Rapideye SVM 
RF 

0.92 
0.92 

91.80% 
93.07% 

[5] AwiFS Decision tree  91.81% 

[6] WorldView 2 RF 
ORF-SVM 
1A11 

0.82 
0.83 

83.70% 
85.20% 

[7] Landsat RF 0.73 82,00% 

[8] Sentinel 1 SVM 
RF 
K-NN 

0.75 
0.73 
0.73 

80.80% 
79.60% 
79.48% 

[9] Landsat 8 SVM 
MLC 

0.89 
0.88 

91.3% 
90.4% 

[10] Landsat ANN 
SVM 

 97.15% 
96.25% 

[11] Landsat STARFM  74.50% 

[20] Landsat TM RF 
ML 

0.92 
0.83 

 

 
Whereas the application of classification algorithm as random forest and supported vector 
machine has been explored in LULC classification using multispectral imagery, there is a 
paucity of knowledge on the performance od those algorithm on medium resolution 
Sentinel-2 imagery. This study compared the performance of RF and SVM classifiers on 
the Sentinel 2 image in a heterogeneous urban landscape of Banja Luka, Republic of 
Srpska. The main objectives of the study are to assess (i) accuracy of RF and SVM 
algorithm for LULC classification and (ii) potential of medium resolution open source 
Sentinel-2 image for LULC mapping. 

2. MATERIALS AND METHODS 

2.1. STUDY AREA  

The City of Banja Luka is the study area chosen for this paper. It is located in the South-
Western part of the Republic of Srpska, i.e. in the Western part of Bosnia and Herzegovina. 
The City of Banja Luka is the biggest political and territorial unit occupying 1239 km2 
with the population of 250000. Situated in a basin 164 m above sea level, where the 
Dinaric Alps from the south descend into the Pannonian Basin in the north, Banja Luka 
has temperate continental climate with the prevailing influences from the Pannonian plain 
[27]. The biggest part of study area is covered by forest and agricultural land. 

                     
1 oblique random forest using support vector machines and the one against one 
combination approach; 
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Figure 1. Study area 

2.2. Sentinel-2 

SENTINEL-2 is a European wide-swath, high-resolution, multi-spectral imaging mission. 
The full mission specification of the twin satellites flying in the same orbit but phased at 
180°, is designed to give a high revisit frequency of 5 days at the Equator. Sentinel-2 
multispectral images are used in this study. Sentinel-2 images consists of 13 spectral 
bands: four bands at 10 m (B2, B3, B4 visible and B8 Near infrared specter) ), six bands 
at 20 m (B5, B6, B7, B8a Near Infrared and B11, B12 Shortwave Infrared) and three bands 
at 60 m spatial resolution [28]. The atmospherically and terrain corrected Bottom-of-
atmosphere BoA (surface) reflectance Sentinel 2 Level 2A image from 18.05.2017. used 
in classification are provided from [29]. The input data comprise reflectance values of the 
tree 10 m bands (Band 2, 3 and 4) resampled at 20 m and the reflectance value of the 20 
m bands (Band 8a, 11 and 12). 
 

2.3. Software environment R 

SVM and RF classification are performed in R. R is a language and environment for 
statistical computing, graphics and data manipulation and is available as free software 
under the terms of the Free Software Foundation’s GNU General Public License in source 
code form. R can be extended via packages. Package contains code, data, documentation, 
tests. Linking code to a package makes it easy to share with other users who can easily 
capture, install and learn how to use it. 
In this paper following packages are used: sp (provide plotting spatial data as maps, spatial 
selection, summary, print), raster (provide reading, writing, manipulating, analyzing and 
modeling of gridded spatial data), rasterVis (provide methods for enhanced visualization 
and interaction with raster data), caret (set of function for creating predictive models), 
snow (Support for simple parallel computing in R), rgdal (provides bindings to GDAL and 
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access to projection/transformation operations from the PROJ.4), randomForest and e1071 
(Functions for latent class analysis, short time Fourier transform, fuzzy clustering, support 
vector machines, shortest path computation, bagged clustering, naive Bayes classifier…). 

2.4. Classification 

A pixel-based image analysis was carried out in order to identify four classes (water, 
forest, built up and agricultural), using a Support Vector Machine and Random Forest 
learning algorithm. The ground truth samples (training data) were located according to 
Google Earth. The same training dataset was used for both classification approaches. The 
214 training polygons was created. 

2.4.1. SUPPORTED VECTOR MACHINE 

Supported Vector Machine is a supervised machine learning algorithm, proposed by 
Vapnik [12], which can be used for both classification and regression. SVM is suitable to 
distinguish the patterns and objects and it can be used for pixel-based and object-based 
classification. Satellite image classification with SVM require a training data. Training 
data are represented by {1,-1}=y..r,…1,=i}, y,{x iii  where r is a number of training 

samples and Training vector consists of two classes 1iy for class 1 and 1iy for 

class 2 . If classes are linearly separable it is possible to define at least one hyperplane 

defined by vector w with bias b which can separate the classes properly (training error is 
0) (1): 

     0 bxw         (1) 

To find such hyperplane w and b are estimated in the way that   1 bxwy ii for 1iy

(class 1 ) and   1 bxwy ii for 1iy (class 2 ). These two can be combined to 

provide (2): 
    01 bxwy ii        (2) 

There are many hyperplanes which could be fitted to separate two classes but there is only 
one n dimensional optimal hyperplane. Optimal hyperplane between two classes is 
founded by maximizing the gap between the classes closest point (see Figure 2). The 
training points who are closest to the optimal hyperplane and lying on the two boundaries, 
given with 1 bxw i , are called support vectors and the middle of the margin is 

optimal separating hyperplane. 

 

Figure 2. Optimal hyperplane [13] 
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Mathematically, this means that we want maximize the distance between supported 

vectors. This distance is equal to
w

2
. This is expressed as: 

w
2

1
min         (3) 

Subject to following constraints: 
  1 bxwy ii  

Where |(|w|)| is the norm of the hyperplane. Using the Lagrangian multiplier, the cost 
function can be defined as (4): 

   



r

i
iii bxwyaw

1

2
1

2

1
     (4) 

Where ia  is the Lagrangian multiplier. 

For the non-linearly separable classes, and the constrain of equation 2 cannot be satisfied. 
To deal with such cases using only linear separate boundaries set of new variables that the 
distance the case is from the optimal hyperplane and so the amount of coloration of the 
consistence may be introduces [14]. 
The Equation (1) becomes (5): 
 





r

i
iCw

1

2

2

1
min         (5) 

Under the constraints of    iii bxwy  1  i=1,…, r. Where C controls the magnitude 

of the penalty associated with training samples that lie on the wrong side of the decision 
boundary. To generalize the above method to non-linear discriminant functions, the 
Support Vector Machine maps the input vector x by non-linear mapping  x  into a high-

dimensional feature space and then constructs the optimal separating hyperplane in that 
space [15]. According to the Marcer’s theorem the inner product of the vectors in the 
mapping space can be expressed as a function of the inner products of the corresponding 
vector in the original space [16]. The inner product operation (6): 

     jiji xxKxx ,         (6) 

Where is  ji xxK , called kernel function. Radial basis function defined with [14], [16], 

[17] (7): 

   0,,
2


  ji xx

ji exxK        (7) 

is one of the most powerful kernels. If we choose  ji xxK ,  the non-linear SVM is reduced 

to its linear version. The classical linearly constrained optimization problem can be 
translated (using a Lagrangian formulation) into following dual problem (8): 

Maximize:  jiji

r

i

r

i

r

i
jii xxKyyaaa ,

2

1

1 1 1
 
  

                          (8) 
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Subject to 



r

i
ii ay

1

0 Cai 0 , i=1,…, r. ia is a Lagrange multiplier corresponding 

with each constraint in original problem. 
Using appropriate kernel function in optimal classification surface can achieve linear 
classification after nonlinear transformation, while computational complexity does not 
increase. The final result is the discriminant function f(x) conveniently expressed as a 
function of the data in original (lower) dimensional feature space (9): 

   



Si

jiii bxxKyaxf ,         (9) 

For this research, SVM was run in R software. The parameters which had to be defined in 
order to apply the algorithm were: input data (all bands from the Sentinel-2 image), SVM-
type (C-classification), SVM-kernel (Radial Basis Function), cost (C = 100) and gamma 
(γ=0.5). The determination of parameters was solved by cross validation and grid search 
on the training data set. 

2.4.2. RANDOM FOREST 

The random forests algorithm is a machine learning technique proposed by Breiman [18], 
Consists of a collection of tree-structured classifiers   ,...1,,  kxh k  where the k  

are independent identically distributed random vectors and each tree casts a unit vote for 
most frequent class to the input vector (x). A RF uses a random subset of input features or 
predictive variables in the division of every node, instead of using the best variables, which 
reduces the generalization error. Additionally, to increase the diversity of the trees, a RF 
uses bagging or bootstrap aggregating to make the trees grow from different training data 
subsets [20]. In bagging a each randomly selected subset (without replacement) of certain 
proportion of the training dataset is used to grow each tree [19]. The samples which are 
not used in the training subset are included as part of another subset called out-of-bag 
(oob). OOB elements can be classified by the tree to evaluate performance. RF use the 
Gini Index as a measure for the best split selection, which measures the impurity of a given 
element with respect to the rest of the classes [18]. For a given training dataset T, the Gini 
Index can be expressed as: 

     TTCfTTCf j
ij

i /,/,


                 (10) 

Where   TTCf i /, is the probability that a selected case belongs to class iC . Thus, by 

using a given combination of features, a decision tree is made to grow up to its maximum 
depth (with no pruning). Hence, RF, as it grows without pruning, presents an added 
advantage. This RF also provides an assessment of the relative importance of the different 
features or variables during the classification process [21]. To assess the importance of 
each feature (e.g. satellite image band), the RF switches one of the input random variables 
while keeping the rest constant, and it measures the decrease in accuracy which has taken 
place by means of the oob error estimation and of Gini Index decrease [18]. 
The RF algorithm was implemented using carter and raster package within R. Two 
parameters are required to construct an RF framework: the number of decision tree (k) in 
the ensemble and the number of input predictors (m) randomly selected at each node. 
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2.5. Accuracy assessment 

Confusion (error) matrix is frequently used for standard pixel-based accuracy assessment. 
Confusion matrix is simple cross tabulation of the predicted class label against the 
reference data for a sample of cases at the specific locations, it provides a foundation on 
which both classification accuracy and characterize errors can be define [22]. 

 
Figure 3. Confusion matrix. Diagonal of the matrix contain the number of pixel correctly 

classified for each class, whereas the off-diagonal elements represent pixel where is 
disagreement in the predicted and actual class [23]. 

Many measures of classification accuracy can be derived from a confusion matrix: kappa 
coefficient, overall, commission and omission error. 
Overall accuracy describes the proportion of the total number of correct classified for all 
class and total number of pixel in confusion matrix (sum of diagonal members of matrix 
divided by total sum of pixels) Eq (11). Commission error (CE) and Omission error (OE) 
describe the errors related to individual classes. CE represents pixels that belong to another 
class but are labeled as belonging to the target class (i.e. the percentage of pixels classified 
as water but which do actually not belong to that class). OE represents the pixels that 
belong a class but fail to be classified into that class (i.e. percentage of pixels which are 
water but which were not classified as such) 

1001 



n

n

uracyOverallacc

k

i
ii

     (11) 

Overall accuracy have often been criticized because in the some cases may have been 
allocated to the correct class purely by chance [23]. For highlights the difference between 
correctly classified pixels and the chance agreement presented by sum of the rows and 
columns Cohen [24] introduced Kappa statistics Eq(12). Kappa statistics is used as a 
measure of classification accuracy reduced for accidentally correct class agreement. 
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Registered value reflects the overall classification accuracy and consistency between the 
image and the reference grid with a random distribution of pixels in the classes. 
Interpretation of Kappa coefficient proposed by Landis and Koch [25] is showed in Table 
3.  

Table 2. Kappa coeficient interpretation [25] 

Kappa coefficient value Interpretation 

0.81  ܭ  1 Perfect agreement 

0.61  ܭ  0.8 substantial agreement 

0.41  ܭ  0.6 moderate agreement 

0.21  ܭ  0.4 Fair agreement 

0.0  ܭ  0.2 Poor agreement 

 
It is a well-known phenomenon in binary classification that a training set consisting of 
different numbers of representatives from either class may result in a classifier that is 
biased towards the more frequent class. The balanced accuracy can be defined as the 
average accuracy obtained on either class which avoids inflated performance estimates on 
imbalanced datasets [26]. 

3. RESULTS AND DISCUSION 

The results of classification are presented in Figure 3 . 

 
                            (a)         (b) 

Figure 4. Results of Sentinel 2 classification based on (a) SVM (b) RF 
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The results of the image classification was validated by pixel-by-pixel accuracy 
assessment based on validation points. The validation points were selected over different 
locations representing different land cover/land use classes. A 316 validation points where 
created from which 89, 104, 75 and 48 respectively for agricultural, built up, forest and 
water class. Same points are used for the RF and SVM classifier. Table 4 provide overall 
and per class classification accuracies achieved by random forest and SVM classifier. 

Table 3. Accuracy assessment of Sentinel 2 classification based on SVM and RF 

Algorithm Class Kappa Overall 
accuracy 

Omission Commission Balanced 
Accuracy 

SVM Agricultural 0.87 
(0.78-
0.88) 

90.82 
(83.89-
91.44) 

14.61 
(6.78-
22.44) 

21.84 
(14.33-
29.35) 

0.90 

Built up 10.58 
(4.21-
16.95) 

6.06 
(0.83-11.29) 

0.93 

Forest 5.33 
(-0.48-
11.14) 

13.41 
(5.49-21.33) 

0.95 

Water 2.08 
(-3.43-
7.59) 

2.08 
(-3.43-7.59) 

0.99 

RF Agricultural 0.84 
(0.81-
0.90) 

88.29 
(84.22-
91.62) 

17.98 
(9.52-
26.43) 

21.35 
(12.90-
29.80) 

0.87 

Built up 13.46 
(6.46-
20.46) 

12.62 
(5.76-19.48) 

0.90 

Forest 2.67 
(-1.82-
7.16) 

3.95 
(-1.32-9.22) 

0.97 

Water 0 2.08 
(-3.42-7.59) 

0.99 

Both classifier produce high overall accuracy and perfect agreement with reality. 
Although, SVM classifier had a higher accuracy than the RF there were no significant 
difference (p<0.05) in the agreement with reality between the classification obtained using 
RF and SVM classifier. In general water class achieved lowest value (higher accuracy) of 
commission and omission error for both classifier while lowest accuracy was produced for 
agricultural class. RF classifier produce higher commission error for built up class 
(12.62%) then the SVM (6.06%) while SVM produce higher omission and commission 
error for forest class (5.33;13.41) then RF algorithm (2.67; 3.95). The high omission error 
of the agricultural class was caused by the confusion with built up since some crop surface 
have similar spectral signature as built up. Results of accuracy assessment were validated 
through computation of area of delineated LULC classes. Results are shown in Table 4. 
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Table 4. Estimated area of LULC classes [km2] 

 Class RF SVM RF-SVM 

Agricultural 507.78 516.76 -8.98 

Built up 72.16 65.91 6.25 

Forest 654.27 652.25 2.02 

Water 4.58 3.88 0.70 

4. CONCLUSION 

This research evaluated the potential of space borne multispectral sensor Sentinel-2, with 
advanced classification techniques RF and SVM to delineate land cover/land use classes 
in a heterogeneous urban landscape. Results in this study showed that RF and SVM 
classifier can be successfully used for land use/land cover mapping from Sentinel 2 
imagery achieving a kappa coefficient of 0.84 and 0.87 respectively. Comparing the two 
classifiers, results demonstrate a slightly better overall performance of SVM. 
Classification results illustrated that water class could be successfully identified using both 
RF and SVM while highest omission and commission error is detected for agricultural 
class. 
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